Skip to main content

Advertisement

Log in

A Colorimetric and Fluorescent Chemosensor for the Selective Detection of Cu2+ and Zn2+ Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new bi-functional chemosensor 1 based on 3,5-dichlorosalicylaldehyde and 2-(methylthio)aniline has been synthesized. It can detect Cu2+ with a color change from pale yellow to dark yellow in aqueous solution. The selective mechanism of 1 for Cu2+ was proposed to be the enhancement of the intramolecular charge transfer (ICT) band, which was explained by theoretical calculations. The sensor 1 could be used to detect and quantify Cu2+ in water samples. In addition, the sensor 1 displayed “turn-on” fluorescence response only to Zn2+, based on an effect of chelation-enhanced fluorescence (CHEF). Therefore, 1 can serve as a ‘single sensor for two different targets’ with dual modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim JH, Noh JY, Hwang IH, Kang J, Kim J, Kim C (2013) An anthracene-based fluorescent chemosensor for Zn2+. Tetrahedron Lett 54:2415–2418

    Article  CAS  Google Scholar 

  2. Wang W, Fu A, You J, Gao G, Lan J, Chen L (2010) Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron 66:3695–3701

    Article  CAS  Google Scholar 

  3. Mahapatra AK, Hazra G, Das NK, Goswami S (2011) A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines. Sensors Actuators B Chem 156:456–462

    Article  CAS  Google Scholar 

  4. Kaur P, Kaur S, Singh K (2009) Colorimetric detection of cyanide in water using a highly selective Cu2+ chemosensor. Inorg Chem Commun 12:978–981

    Article  CAS  Google Scholar 

  5. Chen X, Jou MJ, Lee H, Kou S, Lim J, Nam S-W, Park S, Kim K-M, Yoon J (2009) New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sensors Actuators B Chem 137:597–602

    Article  CAS  Google Scholar 

  6. Yin S, Leen V, Van Snick S, Boens N, Dehaen W (2010) A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY. Chem Commun (Camb) 46:6329–6331

    Article  CAS  Google Scholar 

  7. Yu F, Zhang W, Li P, Xing Y, Tong L, Ma J, Tang B (2009) Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging. Analyst 134:1826–1833

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Commun 4872

  9. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Zhang X, Zhu B, Xue J, Zhu Z, Tan W (2011) A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+ in aqueous media. Analyst 136:1124–1128

    Article  CAS  PubMed  Google Scholar 

  11. Yu M-M, Li Z-X, Wei L-H, Wei D-H, Tang M-S (2008) A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org Lett 10:5115–5118

    Article  CAS  PubMed  Google Scholar 

  12. Rurack K (2001) Flipping the light switch “ON” – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim Acta A Mol Biomol Spectrosc 57:2161–2195

    Article  CAS  PubMed  Google Scholar 

  13. Kim MS, Kim KS, Yang SO, Kim KW (2009) Pentalogy of Cantrell in a neonate: a case report. J Korean Soc Radiol 61:341

    Article  Google Scholar 

  14. Huang X, Guo Z, Zhu W, Xie Y, Tian H (2008) A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework. Chem Commun (Camb) 5143–5145.

  15. Mu H, Gong R, Ma Q, Sun Y, Fu E (2007) A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+. Tetrahedron Lett 48:5525–5529

    Article  CAS  Google Scholar 

  16. Goswami S, Sen D, Das NK (2010) A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett 12:856–859

    Article  CAS  PubMed  Google Scholar 

  17. Song EJ, Park GJ, Lee JJ, Lee S, Noh I, Kim Y, Kim SJ, Kim C, Harrison RG (2015) A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sensors Actuators B Chem 213:268–275

    Article  CAS  Google Scholar 

  18. Noh JY, Park GJ, Na YJ, Jo HY, Lee SA, Kim C (2014) A colorimetric “naked-eye” Cu(II) chemosensor and pH indicator in 100 % aqueous solution. Dalton Trans 43:5652–5656

    Article  CAS  PubMed  Google Scholar 

  19. Gunnlaugsson T, Leonard JP, Murray NS (2004) Highly selective colorimetric naked eye Cu(II) detection using an azobenzene chemosensor. Org Lett 6:1557–1560

    Article  CAS  PubMed  Google Scholar 

  20. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans 42:16569–16577

    Article  CAS  PubMed  Google Scholar 

  21. Kundu A, Hariharan PS, Prabakaran K, Anthony SP (2015) Synthesis of new colori/fluorimetric chemosensor for selective sensing of biologically important Fe3+, Cu2+ and Zn2+ metal ions. Spectrochim Acta A Mol Biomol Spectrosc 151:426–431

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Men G, Bu W, Liang C, Sun H, Jiang S (2015) A colorimetric and fluorescent probe for multiple transition metal ions (Cu2+, Zn2+ and Ni2+): fast response and high selectivity. Sensors Actuators B Chem 220:463–471

    Article  CAS  Google Scholar 

  23. Tang L, Cai M, Huang Z, Zhong K, Hou S (2013) Rapid and highly selective relay recognition of Cu(II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water. Sensors Actuators B Chem 185:188–194

    Article  CAS  Google Scholar 

  24. Xie XM, Smart TG (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521–524

    Article  CAS  PubMed  Google Scholar 

  25. Jiang PJ, Guo ZJ (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  26. Zalewski PD, Forbes IJ, Betts WH (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296(Pt 2):403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Na YJ, Hwang IH, Jo HY, Lee SA, Park GJ, Kim C (2013) Fluorescent chemosensor based-on the combination of julolidine and furan for selective detection of zinc ion. Inorg Chem Commun 35:342–345

    Article  CAS  Google Scholar 

  28. Weiss JH, Sensi SL, Koh JY (2000) Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  29. Bitanihirwe BKY, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63:1029–1049

    Article  CAS  PubMed  Google Scholar 

  30. Lin H-Y, Cheng P-Y, Wan C-F, Wu A-T (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137:4415–4417

    Article  CAS  PubMed  Google Scholar 

  31. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  CAS  PubMed  Google Scholar 

  32. Parkesh R, Clive Lee T, Gunnlaugsson T (2007) Highly selective 4-amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Org Biomol Chem 5:310–317

    Article  CAS  PubMed  Google Scholar 

  33. Park MS, Swamy KMK, Lee YJ, Lee HN, Jang YJ, Moon YH, Yoon J (2006) A new acridine derivative as a fluorescent chemosensor for zinc ions in an 100 % aqueous solution: a comparison of binding property with anthracene derivative. Tetrahedron Lett 47:8129–8132

    Article  CAS  Google Scholar 

  34. Cai Y, Meng X, Wang S, Zhu M, Pan Z, Guo QX (2013) A quinoline based fluorescent probe that can distinguish zinc(II) from cadmium(II) in water. Tetrahedron Lett 54:1125–1128

    Article  CAS  Google Scholar 

  35. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  PubMed  Google Scholar 

  36. Choi DW, Koh JY (2003) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  Google Scholar 

  37. Bush AI (2003) Alzheimer Dis Assoc Disord 17:147–150

    Article  PubMed  Google Scholar 

  38. Cuajungco MP, Lees GJ (1997) Zinc and Alzheimer’s disease: is there a direct link? Brain Res Rev 23:219–236

    Article  CAS  PubMed  Google Scholar 

  39. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  CAS  PubMed  Google Scholar 

  40. Kim JH, Hwang IH, Jang SP, Kang J, Kim S, Noh I, Kim Y, Kim C, Harrison RG (2013) Zinc sensors with lower binding affinities for cellular imaging. Dalton Trans 42:5500–5507

    Article  CAS  PubMed  Google Scholar 

  41. Lee HG, Lee JH, Jang SP, Hwang IH, Kim S-J, Kim Y, Kim C, Harrison RG (2013) Zinc selective chemosensors based on the flexible dipicolylamine and quinoline. Inorg Chim Acta 394:542–551

    Article  CAS  Google Scholar 

  42. Lee HG, Lee JH, Jang SP, Park HM, Kim S-J, Kim Y, Kim C, Harrison RG (2011) Zinc selective chemosensor based on pyridyl-amide fluorescence. Tetrahedron 67:8073–8078

    Article  CAS  Google Scholar 

  43. Rajabi Khorrami A, Fakhari AR, Shamsipur M, Naeimi H (2009) Pre-concentration of ultra trace amounts of copper, zinc, cobalt and nickel in environmental water samples using modified C18 extraction disks and determination by inductively coupled plasma–optical emission spectrometry. Int J Environ Anal Chem 89:319–329

    Article  Google Scholar 

  44. Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278

    Article  CAS  PubMed  Google Scholar 

  45. Rao KS, Balaji T, Rao TP, Babu Y, Naidu GRK (2002) Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma- atomic emission spectrometry. Spectrochim Acta B At Spectrosc 57:1333–1338

    Article  Google Scholar 

  46. Sturgeon RE, Berman SS, Desaulniers A, Russell DS (1979) Determination of iron, manganese, and zinc in seawater by graphite furnace atomic absorption spectrometry. Anal Chem 51:2364–2369

    Article  CAS  Google Scholar 

  47. GULABOSKI R, MIRESKI V, SCHOLZ F (2002) An electrochemical method for determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem Commun 4:277–283

    Article  CAS  Google Scholar 

  48. Park GJ, Na YJ, Jo HY, Lee SA, Kim AR, Noh I, Kim C (2014) A single chemosensor for multiple analytes: fluorogenic detection of Zn2+ and OAc ions in aqueous solution, and an application to bioimaging. New J Chem 38:2587

    Article  CAS  Google Scholar 

  49. Wang J, Lin W, Li W (2012) Single fluorescent probe displays a distinct response to Zn2+ and Cd2+. Chemistry 18:13629–13632

    Article  CAS  PubMed  Google Scholar 

  50. Duong TQ, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301

    Article  PubMed  Google Scholar 

  51. Liu X, Zhang N, Zhou J, Chang T, Fang C, Shangguan D (2013) A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst 138:901–906

    Article  CAS  PubMed  Google Scholar 

  52. Hu Y, Liu Y, Kim G, Jun EJ, Swamy KMK, Kim Y, Kim S-J, Yoon J (2015) Pyrene based fluorescent probes for detecting endogenous zinc ions in live cells. Dyes Pigments 113:372–377

    Article  CAS  Google Scholar 

  53. Guo Z, Kim G-H, Yoon J, Shin I (2014) Synthesis of a highly Zn2+-selective cyanine-based probe and its use for tracing endogenous zinc ions in cells and organisms. Nat Protoc 9:1245–1254

    Article  CAS  PubMed  Google Scholar 

  54. Choi JY, Kim D, Yoon J (2013) A highly selective “turn-on” fluorescent chemosensor based on hydroxy pyrene–hydrazone derivative for Zn2+. Dyes Pigments 96:176–179

    Article  CAS  Google Scholar 

  55. Liu Z, Zhang C, Chen Y, Qian F, Bai Y, He W, Guo Z (2014) In vivo ratiometric Zn2+ imaging in zebrafish larvae using a new visible light excitable fluorescent sensor. Chem Commun 50:1253–1255

    Article  CAS  Google Scholar 

  56. Zhang C, Liu Z, Li Y, He W, Gao X, Guo Z (2013) In vitro and in vivo imaging application of a 1,8-naphthalimide-derived Zn2+ fluorescent sensor with nuclear envelope penetrability. Chem Commun (Camb) 49:11430–11432

    Article  CAS  Google Scholar 

  57. Jiang Q, Guo Z, Zhao Y, Wang F, Mao L (2015) In vivo fluorescence sensing of the salicylate-induced change of zinc ion concentration in the auditory cortex of rat brain. Analyst 140:197–203

    Article  CAS  PubMed  Google Scholar 

  58. Becke AD (1993) Density-functional thermochemistry.III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  60. Yucel RM, He Y, Zaslavsky AM (2011) Gaussian-based routines to impute categorical variables in health surveys. Stat Med 30:3447–3460

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  62. Francl MM (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  63. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  64. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270

    Article  CAS  Google Scholar 

  65. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  66. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  67. O & apos; Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845.

  68. Goswami S, Das AK, Maity S (2013) “PET” vs. “push-pull” induced ICT: a remarkable coumarinyl-appended pyrimidine based naked eye colorimetric and fluorimetric sensor for the detection of Hg2+ ions in aqueous media with test trips. Dalton Trans 42:16259–16263

    Article  CAS  PubMed  Google Scholar 

  69. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–203

    CAS  Google Scholar 

  70. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707.

  71. Wu S-P, Du K-J, Sung Y-M (2010) Colorimetric sensing of Cu(II): cu(II) induced deprotonation of an amide responsible for color changes. Dalton Trans 39:4363–4368

    Article  CAS  PubMed  Google Scholar 

  72. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  73. Wu GH, Wang DX, Wu DY, Gao Y, Wang ZQ (2009) Highly sensitive optical chemosensor for the detection of Cu2+ using a rhodamine B spirolatam. J Chem Sci 121:543–548

    Article  CAS  Google Scholar 

  74. Tsui Y-K, Devaraj S, Yen Y-P (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B Chem 161:510–519

    Article  CAS  Google Scholar 

  75. Gordon B, Callan P, Vickers C (2008) WHO guidelines for drinking-water quality. WHO Chron 38:564

    Google Scholar 

  76. Park GJ, Lee JJ, You GR, Nguyen LT, Noh I, Kim C (2016) A dual chemosensor for Zn2+ and Co2+ in aqueous media and living cells: experimental and theoretical studies. Sensors Actuators B Chem 223:509–519

    Article  CAS  Google Scholar 

  77. Ma Y, Wang F, Kambam S, Chen X (2013) A quinoline-based fluorescent chemosensor for distinguishing cadmium from zinc ions using cysteine as an auxiliary reagent. Sensors Actuators B Chem 188:1116–1122

    Article  CAS  Google Scholar 

  78. Lim NC, Schuster JV, Porto MC, Tanudra MA, Yao L, Freake HC, Brückner C (2005) Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorg Chem 44:2018–2030

    Article  CAS  PubMed  Google Scholar 

  79. Zhou Y, Li ZX, Zang SQ, Zhu YY, Zhang HY, Hou HW, Mak TCW (2012) A novel sensitive turn-on fluorescent Zn2+ chemosensor based on an easy to prepare C 3-symmetric schiff-base derivative in 100 % aqueous solution. Org Lett 14:1214–1217

    Article  CAS  PubMed  Google Scholar 

  80. Hsieh WH, Wan CF, Liao DJ, Wu AT (2012) A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Lett 53:5848–5851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A2A1A11051794 and NRF-2015R1A2A2A09001301) is gratefully acknowledged. We thank Nano-Inorganic Laboratory, Department of Nano & Bio Chemistry, Kookmin University to access the Gaussian 03 program packages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Electronic supplementary material

ESM 1

(DOCX 3298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Jo, T.G., Ahn, H.M. et al. A Colorimetric and Fluorescent Chemosensor for the Selective Detection of Cu2+ and Zn2+ Ions. J Fluoresc 27, 357–367 (2017). https://doi.org/10.1007/s10895-016-1964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1964-3

Keywords

Navigation