Skip to main content

Advertisement

Log in

Hydrazone Based Dual – Responsive Colorimetric and Ratiometric Chemosensor for the Detection of Cu2+/F Ions: DNA Tracking, Practical Performance in Environmental Samples and Tooth Paste

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Colorimetric sensors have attracted wide scope of attentions due to its fascinating advantages, like handy, equipment-free and naked eye detections. In this investigation, a new and novel hydrazone based dual-responsive ratiometric/colorimetric chemosensor have been developed for highly selective and sensitive detection of Cu2+ and F ions in dimethyl sulfoxide (DMSO) solvent. The probe showed highly selective sensing towards Cu2+ and F ions by exhibiting a color change from pale yellow to yellowish green and pale yellow to yellowish brown respectively., in DMSO without any interference of other ions at same concentration. These experimental results have also substantiated by the NMR, HR-MS, UV-Vis spectroscopic, cyclic voltammetry, differential pulse voltammetry techniques and DFT calculations. The detection limits are found to be 5.8 μM for Cu2+ and 0.025 μM for F ions which is far below to the values recommended by WHO. The stoichiometric ratios between NAPCBH and Cu2+/ F- ions were confirmed from the Job’s plots and 1H NMR titration experiments which are found to be 2:1 and 1:1 respectively. The tracking ability of the DNA with NAPCBH-Cu2+ was studied by UV-Vis titration and Cyclic voltammetry measurements. It shows efficient affinity towards DNA with NAPCBH-Cu2+. The probe can also quantitatively determine the Copper and fluoride ions present in environmental samples & toothpaste. The NAPCBH was promptly recovered by utilizing very low concentration of HCl, showing that was found feasible and re-usable sensor for the convenient detection of Cu2+ and F ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abedalwafa MA, Li Y, Ni C, Wang L (2019) Colorimetric sensor arrays for the detection and identification of antibiotics. Anal Methods 11:2836–2854

    Article  Google Scholar 

  2. Qin L, Hou L, Feng J, Chao J, Wang Y, Jin WJ (2017) A novel chemosensor with visible light excitability for sensing CN− in aqueous medium and living cells via a Cu2+ displacement approach. Anal Methods 9:259–266

    Article  CAS  Google Scholar 

  3. Udhayakumari D, Naha S, Velmathi S (2017) Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal Methods 9:552–578

    Article  CAS  Google Scholar 

  4. Cotruvo Joseph A Jr, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44:4400–4414

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim MS, Lee SY, Jung JM, Kim C (2017) A new Schiff-base chemosensor for selective detection of Cu2+ and Co2+ and its copper complex for colorimetric sensing of S2− in aqueous solution. Photochem Photobiol Sci 16:1677–1689

    Article  CAS  PubMed  Google Scholar 

  6. Kim YS, Park GJ, Lee SA, Kim C (2015) A colorimetric chemosensor for the sequential detection of copper ion and amino acids (cysteine and histidine) in aqueous solution. RSC Adv 5:31179–31188

    Article  CAS  Google Scholar 

  7. Ge C, Luo Q, Wang D, Zhao S, Liang X, Yu L, Xing X, Zeng L (2014) Colorimetric detection of copper(II) ion using click chemistry and Hemin/G-Quadruplex horseradish peroxidase-mimicking DNAzyme. Anal Chem 86:6387–6392

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Zeng Y, Hu Q, Yu X, Guo J, Pan Z (2012) A fluorescence “turn-on” chemodosimeter for Cu2+ in aqueous solution based on the ion promoted oxidation. Dalton Trans 41:3623–3626

    Article  CAS  PubMed  Google Scholar 

  9. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes Pigments 99:6–13

    Article  CAS  Google Scholar 

  10. Adhikari S, Ghosh A, Mandal S, Sengupta A, Chattopadhyay A, Sanmartín Matalobos J, Lohar S, Das D (2014) Visible light excitable ON fluorescence and naked eye detection of Cu2+via hydrolysis of rhodamine–thiophene conjugate: human breast cancer cell (MCF7) imaging studies. Dalton Trans 43:7747–7751

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Kang M, Choi H-A, Jung JY, Swamy KMK, Kim S, Kim D, Kim J, Lee C, Yoon J (2014) Organic radical-induced Cu2+ selective sensing based on thiazolothiazole derivatives. Sensors Actuators B Chem 192:691–696

    Article  CAS  Google Scholar 

  12. Kim HJ, Hong J, Hong A, Ham S, Lee JH, Kim JS (2008) Cu2+-induced intermolecular static Excimer formation of Pyrenealkylamine. Org Lett 10:1963–1966

    Article  CAS  PubMed  Google Scholar 

  13. Yeh J-T, Chen W-C, Liu S-R, Wu S-P (2014) A coumarin-based sensitive and selective fluorescent sensor for copper(ii) ions. New J Chem 38:4434–4439

    Article  CAS  Google Scholar 

  14. Zhou Y, Wang F, Kim Y, Kim S-J, Yoon J (2009) Cu2+-selective Ratiometric and “off-on” sensor based on the Rhodamine derivative bearing Pyrene group. Org Lett 11:4442–4445

    Article  CAS  PubMed  Google Scholar 

  15. Mariappan K, Alaparthi M, Caple G, Balasubramanian V, Hoffman MM, Hudspeth M, Sykes AG (2014) Selective fluorescence sensing of copper(II) and water via competing imine hydrolysis and alcohol oxidation pathways sensitive to water content in aqueous acetonitrile mixtures. Inorg Chem 53:2953–2962

    Article  CAS  PubMed  Google Scholar 

  16. Schleper B, Stuerenburg HJ (2001) Copper deficiency-associated myelopathy in a 45-year-old woman. J Neurol 248:705–706

    Article  CAS  PubMed  Google Scholar 

  17. World Health Organisation (WHO) (2008) WHO guidelines for drinking-water quality - Third edition. Geneva 3rd edn., 1: 564

  18. Li J, Yin X, Li B, Li X, Pan Y, Li J, Guo Y (2019) Spiropyran in situ switching: a real-time fluorescence strategy for tracking DNA G-Quadruplexes in live cells. Anal Chem 91:5354–5361

    Article  CAS  PubMed  Google Scholar 

  19. Das S, Khatua K, Rakshit A, Carmona A, Sarkar A, Bakthavatsalam S, Ortega R, Datta A (2019) Emerging chemical tools and techniques for tracking biological manganese. Dalton Trans 48:7047–7061

    Article  CAS  PubMed  Google Scholar 

  20. Chiang C-K, Huang C-C, Liu C-W, Chang H-T (2008) Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Anal Chem 80:3716–3721

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Z, Xu L, Zhou X, Qin J, Yang C (2011) Designing label-free DNA sequences to achieve controllable turn-off/on fluorescence response for Hg2+ detection. Chem Commun 47:8010–8012

    Article  CAS  Google Scholar 

  22. Hong Y, Xiong H, Lam JWY, Häußler M, Liu J, Yu Y, Zhong Y, Sung HHY, Williams ID, Wong KS, Tang BZ (2010) Fluorescent bioprobes: structural matching in the docking processes of aggregation-induced emission Fluorogens on DNA surfaces. Chem Eur J 16:1232–1245

    Article  CAS  PubMed  Google Scholar 

  23. Xu L, Zhu Z, Wei D, Zhou X, Qin J, Yang C (2014) Amino-modified Tetraphenylethene derivatives as nucleic acid stain: relationship between the structure and sensitivity. ACS Appl Mater Interfaces 6:18344–18351

    Article  CAS  PubMed  Google Scholar 

  24. Hiremath SD, Gawas RU, Mascarenhas SC, Ganguly A, Banerjee M, Chatterjee A (2019) A water-soluble AIE-gen for organic-solvent-free detection and wash-free imaging of Al3+ ions and subsequent sensing of F− ions and DNA tracking. New J Chem 43:5219–5227

    Article  CAS  Google Scholar 

  25. Sun W, Liu X-Y, Cui J-X, Ma L-L, Zhang Y, Lu Z-L, He L (2019) Mitochondria targeting two-photon fluorescent molecules for gene transfection and biological tracking. J Mater Chem B 7:4309–4318

    Article  CAS  Google Scholar 

  26. Xu X, Daniel WL, Wei W, Mirkin CA (2010) Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6:623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen P, Bai W, Bao Y (2019) Fluorescent chemodosimeters for fluoride ions via silicon-fluorine chemistry: 20 years of progress. J Mater Chem C, 7, 11731-11746

  28. Chakraborty T, Dasgupta S, Bhattacharyya A, Zangrando E, Escudero D, Das D (2019) A macrocyclic tetranuclear ZnII complex as a receptor for selective dual fluorescence sensing of F− and AcO−: effect of a macrocyclic ligand. New J Chem 43:13152–13161

    Article  CAS  Google Scholar 

  29. Pati C, Ghosh K (2019) A 1,8-naphthalimide–pyridoxal conjugate as a supramolecular gelator for colorimetric read out of F− ions in solution, gel and solid states. New J Chem 43:2718–2725

    Article  CAS  Google Scholar 

  30. Ngai JHL, Chang GY, Gao X, Zhou X, Hendsbee AD, Li Y (2019) Design and synthesis of stable indigo polymer semiconductors for organic field-effect transistors with high fluoride sensitivity and selectivity. RSC Adv 9:26230–26237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo Y, Li J, Chai S, Yao J (2017) Nanomaterials for the optical detection of fluoride. Nanoscale 9:17667–17680

    Article  CAS  PubMed  Google Scholar 

  32. Yuan M-S, Wang Q, Wang W, Wang D-E, Wang J, Wang J (2014) Truxene-cored π-expanded triarylborane dyes as single- and two-photon fluorescent probes for fluoride. Analyst 139:1541–1549

    Article  CAS  PubMed  Google Scholar 

  33. Liu R, Gao Y, Zhang Q, Yang X, Lu X, Ke Z, Zhou W, Qu J (2014) A fluorescent probe based on hydroxylnaphthalene 2-cyanoacrylate: fluoride ion detection and its bio-imaging in live cells. New J Chem 38:2941–2945

    Article  CAS  Google Scholar 

  34. Swamy PCA, Mukherjee S, Thilagar P (2013) Dual emissive borane–BODIPY dyads: molecular conformation control over electronic properties and fluorescence response towards fluoride ions. Chem Commun 49:993–995

    Article  Google Scholar 

  35. Xu Z, Kim SK, Han SJ, Lee C, Kociok-Kohn G, James TD, Yoon J (2009) Ratiometric fluorescence sensing of fluoride ions by an asymmetric Bidentate receptor containing a Boronic acid and Imidazolium group. Eur J Org Chem 2009:3058–3065

    Article  CAS  Google Scholar 

  36. Xu W-J, Liu S-J, Zhao X-Y, Sun S, Cheng S, Ma T-C, Sun H-B, Zhao Q, Huang W (2010) Cationic iridium(III) complex containing both Triarylboron and Carbazole moieties as a Ratiometric fluoride probe that utilizes a switchable triplet–singlet emission. Chem Eur J 16:7125–7133

    Article  CAS  PubMed  Google Scholar 

  37. Mallick A, Roy UK, Haldar B, Pratihar S (2012) A newly developed highly selective ratiometric fluoride ion sensor: spectroscopic, NMR and density functional studies. Analyst 137:1247–1251

    Article  CAS  PubMed  Google Scholar 

  38. Sarkar SK, Thilagar P (2013) A borane–bithiophene–BODIPY triad: intriguing tricolor emission and selective fluorescence response towards fluoride ions. Chem Commun 49:8558–8560

    Article  CAS  Google Scholar 

  39. Chen J, Teo KC (2001) Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 450:215–222

    Article  CAS  Google Scholar 

  40. Batista BL, Rodrigues JL, Nunes JA, Tormen L, Curtius AJ, Barbosa F (2008) Simultaneous determination of Cd, Cu, Mn, Ni, Pb and Zn in nail samples by inductively coupled plasma mass spectrometry (ICP-MS) after tetramethylammonium hydroxide solubilization at room temperature: comparison with ETAAS. Talanta 76:575–579

    Article  CAS  PubMed  Google Scholar 

  41. Jin J, Zhang J, Zou L, Tian H (2013) Near-infrared photochromic behavior in a donor–acceptor type diarylethene modulated by the cyanide anion. Analyst 138:1641–1644

    Article  CAS  PubMed  Google Scholar 

  42. You GR, Park GJ, Lee JJ, Kim C (2015) A colorimetric sensor for the sequential detection of Cu2+ and CN− in fully aqueous media: practical performance of Cu2+. Dalton Trans 44:9120–9129

    Article  CAS  PubMed  Google Scholar 

  43. Jo TG, Na YJ, Lee JJ, Lee MM, Lee SY, Kim C (2015) A diaminomaleonitrile based selective colorimetric chemosensor for copper(ii) and fluoride ions. New J Chem 39:2580–2587

    Article  CAS  Google Scholar 

  44. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc(ii) and a colorimetric sensor for iron(ii), copper(ii), and zinc(ii) in aqueous media. Dalton Trans 42:16569–16577

    Article  CAS  PubMed  Google Scholar 

  45. Pavel A, Try AC, Miyaji H, Jursíková K, Lynch VM, Marquez M, Sessler JL (2000) Fluorinated calix[4]pyrrole and Dipyrrolylquinoxaline: neutral anion receptors with augmented affinities and enhanced Selectivities. J Am Chem Soc 122:10268–10272

    Article  CAS  Google Scholar 

  46. Divya KP, Sreejith S, Balakrishna B, Jayamurthy P, Anees P, Ajayaghosh A (2010) A Zn2+−specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples. Chem Commun 46:6069–6071

    Article  CAS  Google Scholar 

  47. Yu H, Fu M, Xiao Y (2010) Switching off FRET by analyte-induced decomposition of squaraine energy acceptor: a concept to transform ‘turn off’ chemodosimeter into ratiometric sensors. Phys Chem 12:7386–7391

    CAS  Google Scholar 

  48. Lv X, Liu J, Liu Y, Zhao Y, Chen M, Wang P, Guo W (2011) Rhodafluor-based chromo- and fluorogenic probe for cyanide anion. Sensors Actuators B Chem 158:405–410

    Article  CAS  Google Scholar 

  49. Lee JJ, Choi YW, You GR, Lee SY, Kim C (2015) A phthalazine-based two-in-one chromogenic receptor for detecting Co2+ and Cu2+ in an aqueous environment. Dalton Trans 44:13305–13314

    Article  CAS  PubMed  Google Scholar 

  50. Zhou S, He H, Guo W, Zhu H, Xue F, Cheng M, Lin J, Wang L, Wang S (2019) Structural design of a high sensitivity biomass cellulose-based colorimetric sensor and its in situ visual recognition mechanism for Cu2+. Carbohydr Polym 219:95–104

    Article  CAS  PubMed  Google Scholar 

  51. Song Y, Qu K, Xu C, Ren J, Qu X (2010) Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem Commun 46:6572–6574

    Article  CAS  Google Scholar 

  52. Ryu KY, Lee JJ, Kim JA, Park DY, Kim C (2016) Colorimetric chemosensor for multiple targets, Cu2+, CN− and S2−. RSC Adv 6:16586–16597

    Article  CAS  Google Scholar 

  53. Jiang C, Yao Y, Kong C, Du J, Meng J, Yao C (2019) A novel colorimetric and ratiometric fluorescent probe for targeted detection of hypochlorous acid based on HClO-mediated anthracene-hydrazone to anthracene-triazole transformation. Anal Methods 11:4157–4164

    Article  CAS  Google Scholar 

  54. Long C, Hu J-H, Fu Q-Q, Ni P-W (2019) A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life. Spectrochim Acta A 219:297–306

    Article  CAS  Google Scholar 

  55. Al Natour R, Ali ZK, Assoud A, Hmadeh M (2019) Two-dimensional metal–organic framework Nanosheets as a dual Ratiometric and turn-off luminescent probe. Inorg Chem 58:10912–10919

    Article  CAS  PubMed  Google Scholar 

  56. Marimuthu P, Ramu A (2018) A ratiometric fluorescence chemosensor for Mg2+ ion and its live cell imaging. Sensors Actuators B Chem 266:384–391

    Article  CAS  Google Scholar 

  57. Khan RI, Ramu A, Pitchumani K (2018) Design and one-pot synthesis of a novel pyrene based fluorescent sensor for selective “turn on”, naked eye detection of Ni2+ ions, and live cell imaging. Sensors Actuators B Chem 266:429–437

    Article  CAS  Google Scholar 

  58. Song EJ, Kang J, You GR, Park GJ, Kim Y, Kim S-J, Kim C, Harrison RG (2013) A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Trans 42:15514–15520

    Article  CAS  PubMed  Google Scholar 

  59. Patil SR, Nandre JP, Patil PA, Sahoo SK, Devi M, Pradeep CP, Fabiao Y, Chen L, Redshaw C, Patil UD (2015) A uracil nitroso amine based colorimetric sensor for the detection of Cu2+ ions from aqueous environment and its practical applications. RSC Adv 5:21464–21470

    Article  CAS  Google Scholar 

  60. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  61. Paterson BM, Karas JA, Scanlon DB, White JM, Donnelly PS (2010) Versatile new Bis(thiosemicarbazone) Bifunctional Chelators: synthesis, conjugation to Bombesin(7−14)-NH2, and Copper-64 radiolabeling. Inorg Chem 49:1884–1893

    Article  CAS  PubMed  Google Scholar 

  62. Tavallali H, Deilamy-Rad G, Moaddeli A, Asghari K (2017) A new pincer-type “naked-eye” colorimetric probe for Cu2+ determination in 80% water media and its application as a solid state sensor and an efficient antibacterial product. Sensors Actuators B Chem 244:1121–1128

    Article  CAS  Google Scholar 

  63. Mergu N, Gupta VK (2015) A novel colorimetric detection probe for copper(II) ions based on a Schiff base. Sensors Actuators B Chem 210:408–417

    Article  CAS  Google Scholar 

  64. Wen X, Wang Q, Fan Z (2018) An active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn2+ and tracking of interactions with single-stranded DNA. Anal Chim Acta 1013:79–86

    Article  CAS  PubMed  Google Scholar 

  65. Goswami S, Manna A, Paul S, Das AK, Aich K, Nandi PK (2013) Resonance-assisted hydrogen bonding induced nucleophilic addition to hamper ESIPT: ratiometric detection of cyanide in aqueous media. Chem Commun 49:2912–2914

    Article  CAS  Google Scholar 

  66. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent Rhodamine Hydrazone Chemosensor for cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  67. Kwon N, Baek G, Swamy KMK, Lee M, Xu Q, Kim Y, Kim S-J, Yoon J (2019) Naphthoimidazolium based ratiometric fluorescent probes for F− and CN−, and anion-activated CO2 sensing. Dyes Pigments 171:107679

    Article  CAS  Google Scholar 

  68. Wu Y, Shi C, Chen Z, Zhou Y, Liu S, Zhao J (2019) A novel hydroxyl-containing polyimide as a colorimetric and ratiometric chemosensor for the reversible detection of fluoride ions. Polym Chem 10:1399–1406

    Article  CAS  Google Scholar 

  69. Arabahmadi R, Orojloo M, Amani S (2014) Azo Schiff bases as colorimetric and fluorescent sensors for recognition of F−, Cd2+ and Hg2+ ions. Anal Methods 6:7384–7393

    Article  CAS  Google Scholar 

  70. Dhillon A, Nair M, Kumar D (2016) Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: a review. Anal Methods 8:5338–5352

    Article  CAS  Google Scholar 

  71. Ghosh S, Ganguly A, Uddin MR, Mandal S, Alam MA, Guchhait N (2016) Dual mode selective chemosensor for copper and fluoride ions: a fluorometric, colorimetric and theoretical investigation. Dalton Trans 45:11042–11051

    Article  CAS  PubMed  Google Scholar 

  72. Paul A, Anbu S, Sharma G, Kuznetsov ML, Guedes Da Silva MFC, Koch B, Pombeiro AJL (2015) Intracellular detection of cu 2+ and S 2- ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor. Dalton Trans 44:16953–16964

    Article  CAS  PubMed  Google Scholar 

  73. Abdulazeez I, Basheer C, Al-Saadi AA (2018) A selective detection approach for copper(ii) ions using a hydrazone-based colorimetric sensor: spectroscopic and DFT study. RSC Adv 8:39983–39991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  75. Lee C, Hill C, Carolina N (1989) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 162:165–169

    Google Scholar 

  76. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  77. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  78. Li J, Ji C, Hou C, Huo D, Zhang S, Luo X, Yang M, Fa H, Deng B (2016) High efficient adsorption and colorimetric detection of trace copper ions with a functional filter paper. Sensors Actuators B Chem 223:853–860

    Article  CAS  Google Scholar 

  79. Qiu B, Zeng Y, Cao L, Hu R, Zhang X, Yu T, Chen J, Yang G, Li Y (2016) A colorimetric and ratiometric fluorescence sensor for sensitive detection of fluoride ions in water and toothpaste. RSC Adv 6:49158–49163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author A.R and W. AD thankful to the school of chemistry, Madurai Kamaraj University for providing instrument facilities funded by DST-IRHPA, FIST, DST-PURSE and UGC-UPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Ramu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A new hydrazone based chemosensor NAPCBH was synthesized via simple synthetic process.

• Dual-response of NAPCBH towards Cu2+ and F- ions in an organic medium was developed.

• The Cu2+ and F- ions detection are highly selective and sensitive.

• ICT mechanism was confirmed for both NAPCBH with Cu2+ and F- ions through Job’s plot, 1H NMR titration and DFT studies.

• DNA tracking ability was also studied for NAPCBH-Cu2+ successively.

• The probe can also quantitatively determine the Copper and fluoride ions present in environmental samples & toothpaste.

• The NAPCBH was readily regenerated at lower concentration of HCl, showing its feasibility to be a re-usable sensor for the convenient detection of Cu2+ and F- ions.

Electronic supplementary material

ESM 1

(DOCX 1891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbu Durai, W., Ramu, A. Hydrazone Based Dual – Responsive Colorimetric and Ratiometric Chemosensor for the Detection of Cu2+/F Ions: DNA Tracking, Practical Performance in Environmental Samples and Tooth Paste. J Fluoresc 30, 275–289 (2020). https://doi.org/10.1007/s10895-020-02488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02488-0

Keywords

Navigation