Skip to main content
Log in

SEM and XPS Study of Cr6+ Removal from Wastewater via Reduction and Adsorption by Hierarchically Structured Carbon Composite in Neutral Media

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A hierarchically structured carbon film (HSC) synthesised during glucose interaction with a halide melt on a molten magnesium catalyst at temperatures is composed of sp, sp2, and sp3 hybridised carbon atoms as well as carbonyl and carboxyl functional groups according to X-ray photoelectron spectroscopy. The hierarchically structured carbon film reduces up to 100% of hexavalent chromium ions from 0.05 and 0.1 M potassium dichromate solutions in a neutral medium. The interaction is instantaneous, and Cr3+ is found in the solution in the form of stable aqua complexes. Trivalent chromium ions are adsorbed only on the film's developed side; no chromium was found on its smooth side. X-ray photoelectron spectroscopy indicates that oxygen content in the carbon film increases by 20% in the form of carbonyl groups. The adsorptive ability of the HSC composite is high and, depending on the concentration of the initial bichromate, reaches 111 mg/g at pH 7, which is much higher than most carbon fibres, carbon nanomaterials and oxide sorbents. The method of reducing hexavalent chromium and adsorbing trivalent chromium is environmentally friendly. Its application will reduce Cr6+ and adsorption of Cr3+, a one-step process without using any acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.A. Wuan, F.E. Okieimen, J.A. Imborvungu, Removal of heavy metals from a contaminated soil using organic chelating acids. Int. J. Environ. Sci. Technol. 7, 485–496 (2010). https://doi.org/10.1007/BF03326158

    Article  Google Scholar 

  2. L. Li, Y. Li, C. Yang, Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr. Polym. 140, 299–307 (2016). https://doi.org/10.1016/j.carbpol.2015.12.067

    Article  CAS  PubMed  Google Scholar 

  3. E. Alvarez-Ayuso, H.W. Nugteren, Purification of chromium (VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite. Water Res. 39(12), 2535–2542 (2005). https://doi.org/10.1016/j.watres.2005.04.069

    Article  CAS  PubMed  Google Scholar 

  4. P.A. Terry, Characterization of Cr ion exchange with hydrotalcite. Chemosphere 57, 541–546 (2004). https://doi.org/10.1016/j.chemosphere.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  5. J. Sun, Zh. Zhang, J. Ji, M. Dou, F. Wang, Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon. Appl. Surf. Sci. 405, 372–379 (2017). https://doi.org/10.1016/j.apsusc.2017.02.044

    Article  CAS  Google Scholar 

  6. X. Kong, Zh. Han, W. Zhang, L. Song, H. Li, Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. Journal of Environmental Management 169, 84–90 (2016). https://doi.org/10.1016/j.jenvman.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  7. D. Kurnosov, A. Burakov, I. Burakova, Development of a Bentonite Clay/Carbon Nanotubes Composite for Liquid-Phase Adsorption. Materials Today: Proceedings 11, 398–403 (2019)

    CAS  Google Scholar 

  8. M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout, M.E. El-Zaidy, Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. Journal of Hazardous Materials 374, 296–308 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.047

    Article  CAS  PubMed  Google Scholar 

  9. M.J. Jorge, M.C. Nilson, H.R. Aracely, F. Machuca-Martínez, Data on the removal of metals (Cr3+, Cr6+, Cd2+, Cu2+, Ni2+, Zn2+) from aqueous solution by adsorption using magnetite particles from electrochemical synthesis. Data in brief 24, 103956 (2019). https://doi.org/10.1016/j.dib.2019.103956

    Article  PubMed  PubMed Central  Google Scholar 

  10. U. Habiba, A.M. Afifi, A. Salleh, BCh. Ang, Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+and Ni2+. Journal of Hazardous Materials 322, 182–194 (2017). https://doi.org/10.1016/j.jhazmat.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  11. S. Srirattanapibul, I.-M. Tang, S. Tongue, Photo catalytic reduction of Cr6+ by ZnO decorated on reduced graphene oxide (rGO) Nanocomposites. Materials Research Bulletin 122, 110705 (2020). https://doi.org/10.1016/j.materresbull.2019.110705

    Article  CAS  Google Scholar 

  12. NSh. Ehishan, N. Sapawe, Performance studies removal of chromium (Cr6+) and lead (Pb2+) by oil palm frond (OPF) adsorbent in aqueous solution. Materials Today: Proceedings 5, 21897–21904 (2018)

    Google Scholar 

  13. S. Ozdemir, E. Kilinc, K.S. Celik, V. Okumus, M. Soylak, , Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chemistry 215, 447–453 (2017). https://doi.org/10.1016/j.foodchem.2016.07.055

    Article  CAS  PubMed  Google Scholar 

  14. S.S. Sambaza, M.L. Masheane, S.P. Malinga, E.N. Nxumalo, S.D. Mhlanga, Polyethyleneimine-carbon nanotube polymeric nanocomposite adsorbents for the removal of Cr6+ from water. Physics and Chemistry of the Earth 100, 236–246 (2017). https://doi.org/10.1016/j.pce.2016.08.002

    Article  Google Scholar 

  15. S.K. Srivastava, R. Tyagi, N. Pant, Adsorption of heavy metal ions on carbonaceous material developed from waste slurry generated in local fertilizer plants. Wat. Res. 23(9), 1161–1165 (1989)

    Article  CAS  Google Scholar 

  16. S. Fierro, T. Watanabe, K. Akai, Y. Einaga, Highly sensitive detection of Cr6+ on boron doped diamond electrodes. Electrochim. Acta 82, 9–11 (2012). https://doi.org/10.1016/j.electacta.2012.03.030

    Article  CAS  Google Scholar 

  17. M.R. Pacquiao, M.D.G. de Luna, N. Thongsai, S. Kladsomboon, P. Paoprasert, Highly fluorescent carbon dots from enokitake mushroom as multifaceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Applied Surface Science 453, 192–203 (2018). https://doi.org/10.1016/j.apsusc.2018.04.199

    Article  CAS  Google Scholar 

  18. L.G. Bettini, F.D. Foglia, P. Piseri, P. Milani, Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid. Nanotechnology 27, 11 (2016)

    Article  Google Scholar 

  19. C. Long, L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang, T. Wei, Z. Fan, Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93, 412–420 (2015). https://doi.org/10.1016/j.carbon.2015.05.040

    Article  CAS  Google Scholar 

  20. A.B. Fuertes, M. Sevilla, High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high performance ionic liquid-based supercapacitors. Carbon 94, 41–52 (2015). https://doi.org/10.1016/j.carbon.2015.05.040

    Article  CAS  Google Scholar 

  21. Zh. Li, W. Lv, Ch. Zhang, B. Li, F. Kang, Q.-H. Yang, A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11–14 (2015). https://doi.org/10.1016/j.carbon.2015.02.054

    Article  CAS  Google Scholar 

  22. J. Liu, H. Li, H. Zhang, Q. Liu, R. Li, B. Li, J. Wang, Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. Journal of Solid-State Chemistry 257, 64–71 (2018). https://doi.org/10.1016/j.jssc.2017.07.033

    Article  CAS  Google Scholar 

  23. X. Deng, B. Zhao, L. Zhu, Z. Shao, Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon 93, 48–58 (2015)

    Article  CAS  Google Scholar 

  24. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  25. V.A. Yolshina, L.A. Yolshina, V.A. Elterman, E.G. Vovkotrub, A.A. Shatunova, V.I. Pryakhina, N.A. Khlebnikov, N.V. Tarakina, Synthesis of and characterization of freestanding, high-hierarchically structured graphene-nanodiamond films. Materials and Design 135, 343–352 (2017). https://doi.org/10.1016/j.matdes.2017.09.033

    Article  CAS  Google Scholar 

  26. L.A. Elshina, V.A. Elshina, Synthesis of a Nanocrystalline α-Al2O3 Powder in Molten Halides in the Temperature Range 700–800°C. Russian Metallurgy (Metally) 2, 138–141 (2020). https://doi.org/10.1134/S0036029520020044

    Article  Google Scholar 

  27. M. Moore, Imaging diamond with x-rays. J. Phys.: Condens. Matter 21(36), 364217 (2009). https://doi.org/10.1088/0953-8984/21/36/364217

    Article  CAS  Google Scholar 

  28. R.R. Karri, J.N. Sahub, B.C. Meikap, Improving efficacy of Cr (VI) adsorption process on sustainable adsorbentderived from waste biomass (sugarcane bagasse) with help of ant colonyoptimization. Industrial Crops & Products 143, 111927 (2020). https://doi.org/10.1016/j.indcrop.2019.111927

    Article  CAS  Google Scholar 

  29. N.K. Mondal, S. Chakraborty, Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: equilibrium, kinetic and thermodynamic studies. Applied Water Science 10, 61 (2020). https://doi.org/10.1007/s13201-020-1142-2

    Article  CAS  Google Scholar 

  30. J. Hu, S.W. Wang, D.D. Shao, Y.H. Dong, J.X. Li, X.K. Wan, Adsorption and Reduction of Chromium (VI) from Aqueous Solution by Multiwalled Carbon Nanotubes. The Open Environmental Pollution & Toxicology Journal 1, 66–73 (2009). https://doi.org/10.2174/1876397900901010066

    Article  CAS  Google Scholar 

  31. L. Li, Ch. Luo, X. Li, H. Duan, X. Wang, Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. International Journal of Biological Macromolecules 66, 172–178 (2014). https://doi.org/10.1016/j.ijbiomac.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  32. M.S. Samuel, J. Bhattacharya, S. Raj, N. Santhanam, H. Singh, N.D. Pradeep Singh, Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. International Journal of Biological Macromolecules 121, 285–292 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.170

    Article  CAS  PubMed  Google Scholar 

  33. R. Gerhardt, B.S. Farias, J.M. Moura, L.S. de Almeida, A.R. da Silva, D. Dias, T.R.S. Cadaval Jr., L.A.A. Pinto, Development of chitosan/Spirulina sp. blend films as biosorbents for Cr6+ and Pb2+ removal. International Journal of Biological Macromolecules 155, 142–152 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.201

    Article  CAS  PubMed  Google Scholar 

  34. M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. Journal of Molecular Liquids 215, 671–679 (2016). https://doi.org/10.1016/j.molliq.2015.12.057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The equipment of the Ural Centre for Shared Use of Modern Nanotechnology at the Ural Federal University and Composition of Compounds Centre for Shared Use of the Institute of High-Temperature Electrochemistry UB RAS was used. This work was performed according to the budgetary plans of Institute of High-Temperature Electrochemistry theme AAAA-A19-119020190042-7.

Author information

Authors and Affiliations

Authors

Contributions

VAY Investigation: Synthesis of carbon composite and Cr6 + interaction, Software, LAY Supervision, Conceptualization, Methodology, Writing- Reviewing and Editing, VIP Formal analysis, Resources.

Corresponding author

Correspondence to L. A. Yolshina.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yolshina, V.A., Yolshina, L.A. & Pryakhina, V.I. SEM and XPS Study of Cr6+ Removal from Wastewater via Reduction and Adsorption by Hierarchically Structured Carbon Composite in Neutral Media. J Inorg Organomet Polym 31, 3624–3635 (2021). https://doi.org/10.1007/s10904-021-02003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02003-3

Keywords

Navigation