Skip to main content
Log in

Synthesis of iron phosphide nanoparticles dispersed in activated carbon and their application in Fenton processes

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Activated carbons containing iron compounds dispersed in their structure have shown great potential for use in advanced oxidation processes, expressively when aiming at the degradation of organic contaminants in water. In this work, we investigated the chemical and structural transformations of nanocomposites constituted by nanostructured Fe/P-containing phases dispersed in an activated carbon (obtained from the chemical activation of a lignocellulosic precursor) and the applications of the produced nanocomposites in dye degradation processes via Fenton-type reactions. X-ray diffraction and scanning electron microscopy experiments combined with energy dispersive X-ray spectrometry showed that the material synthesized at room temperature contains Fe and P compounds in different stoichiometric proportions; heat treatment at 1000 °C led to the formation of FeP (major component) and Fe2P crystalline phases, with average crystallite sizes estimated at 92 and 44 nm, respectively. Adsorption and Fenton-type degradation experiments were performed with aqueous solutions of the industrial dyes methylene blue, Eriochrome Black T, and Ponceau S. A high degree of removal (ranging from 95 to 99%) was observed for all dyes when the Fe/P-containing nanocomposites were used as adsorbents/catalysts. The occurrence of the iron phosphides was found to be especially significant in the case of the Ponceau S dye. These results illustrate the degradation efficiency of dyes and other organic compounds through the use of advanced oxidative processes via the Fenton reaction using activated carbons containing nanostructured iron phosphides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Carneiro, P, Nogueira, R, Zanoni, M (2007) Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigments 74:127–132. https://doi.org/10.1016/j.dyepig.2006.01.022

  2. Correia VM, Stephenson T, Judd SJ (1994) Characterisation of textile wastewaters - a review. Environ Technol (United Kingdom) 15:917–929. https://doi.org/10.1080/09593339409385500

    Article  CAS  Google Scholar 

  3. O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) Colour in textile effluents – sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11%3c1009::AID-JCTB153%3e3.0.CO;2-N

    Article  Google Scholar 

  4. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:1445–1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  5. Anjaneyulu Y, Sreedhara Chary N, Samuel Suman Raj D (2005) Decolourization of industrial effluents - available methods and emerging technologies - a review. Rev Environ Sci Biotechnol 4:245–273. https://doi.org/10.1007/s11157-005-1246-z

    Article  CAS  Google Scholar 

  6. Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274. https://doi.org/10.1016/S0304-3894(02)00017-1

    Article  CAS  Google Scholar 

  7. Almaguer MA, Carpio RR, Alves TLM, Bassin JP (2018) Experimental study and kinetic modelling of the enzymatic degradation of the azo dye Crystal Ponceau 6R by turnip (Brassica rapa) peroxidase. J Environ Chem Eng 6:610–615. https://doi.org/10.1016/j.jece.2017.12.039

    Article  CAS  Google Scholar 

  8. Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y (2018) Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. Data Br 21:1008–1013. https://doi.org/10.1016/j.dib.2018.10.023

    Article  Google Scholar 

  9. Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049

    Article  CAS  Google Scholar 

  10. Pal B, Kaur R, Grover IS (2016) Superior adsorption and photodegradation of eriochrome black-T dye by Fe3+ and Pt4+impregnated TiO2 nanostructures of different shapes. J Ind Eng Chem 33:178–184. https://doi.org/10.1016/j.jiec.2015.09.033

    Article  CAS  Google Scholar 

  11. Tian D, Xu Z, Zhang D, Chen W, Cai J, Deng H, Sun Z, Zhou Y (2019) Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. J Solid State Chem 269:580–587. https://doi.org/10.1016/j.jssc.2018.10.035

    Article  CAS  Google Scholar 

  12. de Luna MDG, Flores ED, Genuino DAD, Futalan CM, Wan MW (2013) Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls - optimization, isotherm and kinetic studies. J Taiwan Inst Chem Eng 44:646–653. https://doi.org/10.1016/j.jtice.2013.01.010

    Article  CAS  Google Scholar 

  13. Clarke EA, Anliker R (1980) Organic dyes and pigments. Handbook of environmental chemistry. 181–215

  14. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/J.CIS.2014.04.002

    Article  CAS  Google Scholar 

  15. Jiang HL, Lin JC, Hai W, Tan HW, Luo YW, Xie XL, Cao Y, He FA (2019) A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloids Surfaces A Physicochem Eng Asp 560:59–68. https://doi.org/10.1016/j.colsurfa.2018.10.004

    Article  CAS  Google Scholar 

  16. Manocha SM (2003) Porous carbons. Sadhana 28:335–348. https://doi.org/10.1007/BF02717142

    Article  CAS  Google Scholar 

  17. Mahmood R, Sharif F, Ali S, Hayyat MU (2015) Enhancing the decolorizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on seed germination. Sci World J. https://doi.org/10.1155/2015/628195

    Article  Google Scholar 

  18. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572. https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  19. Krehula S, Musić S (2008) Influence of aging in an alkaline medium on the microstructural properties of α-FeOOH. J Cryst Growth 310:513–520. https://doi.org/10.1016/j.jcrysgro.2007.10.072

    Article  CAS  Google Scholar 

  20. Krehula S, Popovi S, Musić S (2002) Synthesis of acicular α-FeOOH particles at a very high pH. Mater Lett 54:108–113. https://doi.org/10.1016/S0167-577X(01)00546-8

    Article  CAS  Google Scholar 

  21. Gonçalves GR, Schettino MA, Morigaki MK, Passamani EC, Baggio-Saitovitch E, Freitas JCC (2015) Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment. J Nanoparticle Res 17:303. https://doi.org/10.1007/s11051-015-3092-4

    Article  CAS  Google Scholar 

  22. Cauqui M, Rodríguez-Izquierdo JM (1992) Application of the sol-gel methods to catalyst preparation. J Non Cryst Solids 147–148:724–738. https://doi.org/10.1016/S0022-3093(05)80707-0

    Article  Google Scholar 

  23. Arbain R, Othman M, Palaniandy S (2011) Preparation of iron oxide nanoparticles by mechanical milling. Miner Eng 24:1–9. https://doi.org/10.1016/j.mineng.2010.08.025

    Article  CAS  Google Scholar 

  24. Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45:2401–2414. https://doi.org/10.1016/j.watres.2011.01.028

    Article  CAS  Google Scholar 

  25. Jiang C, Wang R, Ma W (2010) The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant. Colloids Surf Physicochem Eng Asp 369:260–267. https://doi.org/10.1016/j.colsurfa.2010.08.033

    Article  CAS  Google Scholar 

  26. Barka N, Abdennouri M, Makhfouk ME (2011) Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Institute Chem Eng 42:320–326. https://doi.org/10.1016/j.jtice.2010.07.004

    Article  CAS  Google Scholar 

  27. Open Chemistry Database, National Center for Biotechnology Information (2022). USA. Availabe from: https://pubchem.ncbi.nlm.nih.gov

  28. Yapuchura ER, Tartaglia RS, Cunha AG, Freitas JCC, Emmerich FG (2019) Observation of the transformation of silica phytoliths into SiC and SiO2 particles in biomass-derived carbons by using SEM/EDS, Raman spectroscopy, and XRD. J Mater Sci 54:3761–3777. https://doi.org/10.1007/s10853-018-3130-6

    Article  CAS  Google Scholar 

  29. Viali GL, Gonçalves GR, Passamani EC, Freitas JCC, Schettino MA, Takeuchi AY, Larica C (2016) Magnetic and hyperfine properties of Fe2P nanoparticles dispersed in a porous carbon matrix. J Magn Magn Mater 401:173–179. https://doi.org/10.1016/j.jmmm.2015.10.028

    Article  CAS  Google Scholar 

  30. JCPDS-ICDD (1987) Powder diffract. File Inorg Org Data B

  31. Lutterotti L, Matthies S, Wenk HR (1999) MAUD a friendly Java program for material analysis using diffraction, IUCr Newsletter CPD 21:14–15. https://www.iucr.org/__data/assets/pdf_file/0016/21634/cpd21.pdf

  32. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  33. Vinje K (1995) Characterization of porous solids III. Appl Catal 121:23–28

    Article  Google Scholar 

  34. Neimark AV, Lin Y, Ravikovitch PI, Thommes M (2009) Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon N Y 47:1617–1628. https://doi.org/10.1016/j.carbon.2009.01.050

    Article  CAS  Google Scholar 

  35. Idris AM, El-Zahhar AA (2019) Indicative properties measurements by SEM, SEM-EDX and XRD for initial homogeneity tests of new certified reference materials. Microchem J 146:429–433. https://doi.org/10.1016/j.microc.2019.01.032

    Article  CAS  Google Scholar 

  36. Almeida MR, Stephani R, Dos Santos HF, De Oliveira LFC (2010) Spectroscopic and theoretical study of the “Azo”-Dye e124 in condensate phase: evidence of a dominant hydrazo form. J Phys Chem A 114:526–534. https://doi.org/10.1021/jp907473d

    Article  CAS  Google Scholar 

  37. Djomgoue P, Siewe M, Djoufac E, Kenfack P, Njopwouo D (2012) Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T Application for adsorption of nickel in aqueous solution. Appl Surf Sci 258:7470–7479. https://doi.org/10.1016/j.apsusc.2012.04.065

    Article  CAS  Google Scholar 

  38. dos Santos AJ, Sirés I, Martínez-Huitle CA, Brillas E (2018) Total mineralization of mixtures of Tartrazine, Ponceau SS and Direct Blue 71 azo dyes by solar photoelectro-Fenton in pre-pilot plant. Chemosphere 210:1137–1144. https://doi.org/10.1016/j.chemosphere.2018.07.116

    Article  CAS  Google Scholar 

  39. Lopes TR, Cipriano DF, Gonçalves GR, Honorato HA, Schettino MA, Cunha AG, Emmerich FG, Freitas JCC (2017) Multinuclear magnetic resonance study on the occurrence of phosphorus in activated carbons prepared by chemical activation of lignocellulosic residues from the babassu production. J Environ Chem Eng 5:6016–6029. https://doi.org/10.1016/j.jece.2017.11.028

    Article  CAS  Google Scholar 

  40. Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36:1085–1097. https://doi.org/10.1016/S0008-6223(98)00082-7

    Article  CAS  Google Scholar 

  41. Brito GM, Cipriano DF, Schettino MA Jr, Cunha AG, Coelho ERC, Freitas JCC (2019) One-step methodology for preparing physically activated biocarbons from agricultural biomass waste. J Environ Chem Eng 7:103113. https://doi.org/10.1016/j.jece.2019.103113

    Article  CAS  Google Scholar 

  42. Jurkiewicz K, Pawlyta M, Burian A (2018) Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C 4:68. https://doi.org/10.3390/c4040068

    Article  CAS  Google Scholar 

  43. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695. https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  44. Oyama ST, Gott T, Zhao H, Lee YK (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107. https://doi.org/10.1016/j.cattod.2008.09.019

    Article  CAS  Google Scholar 

  45. Muthuswamy E, Kharel PR, Lawes G, Brock SL (2009) Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP. ACS Nano 3:2383–2393. https://doi.org/10.1021/nn900574r

    Article  CAS  Google Scholar 

  46. Park J, Koo B, Hwang Y, Bae C, An K, Park JG, Park HM, Hyeon T (2004) Novel synthesis of magnetic Fe2P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump. Angew Chemie - Int Ed 43:2282–2285. https://doi.org/10.1002/anie.200353562

    Article  CAS  Google Scholar 

  47. Huang X, Dong Q, Huang H, Yue L, Zhu Z, Dai J (2014) Facile synthesis of iron phosphide Fe2P nanoparticle and its catalytic performance in thiophene hydrodesulfurization. J Nanoparticle Res 16:2785. https://doi.org/10.1007/s11051-014-2785-4

    Article  CAS  Google Scholar 

  48. Yao Z, Hai H, Lai Z, Zhang X, Peng F, Yan C (2012) A novel carbothermal synthesis route for carbon nanotube supported Fe2P nanoparticles. Top Catal 55:1040–1045. https://doi.org/10.1007/s11244-012-9885-0

    Article  CAS  Google Scholar 

  49. Matos J, Poon PS, Montaña R, Romero R, Gonçalves GR, Schettino MA Jr, Passamani EC, Freitas JCC (2020) Photocatalytic activity of P-Fe/activated carbon nanocomposites under artificial solar irradiation. Catal Today 356:226–240. https://doi.org/10.1016/j.cattod.2019.06.020

    Article  CAS  Google Scholar 

  50. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  51. Marsh H, Reinoso FR (2006) Activated carbon. Elsevier

  52. Matos J, Fierro V, Montaña R, Rivero E, De Yuso AM, Zhao W, Celzard A (2016) High surface area microporous carbons as photoreactors for the catalytic photodegradation of methylene blue under UV-vis irradiation. Appl Catal A Gen 517:1–11. https://doi.org/10.1016/j.apcata.2016.02.031

    Article  CAS  Google Scholar 

  53. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  54. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  55. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  56. Piccoli V, Gonçalves GR, Cipriano DF, Freitas JCC, Schettino MA Jr (2020) Production of phosphorus-containing activated carbons from coffee husk and application in adsorption processes. Rev Virtual Quim 12:75–88. https://doi.org/10.21577/1984-6835.20200008

    Article  Google Scholar 

  57. Ferreira GMD, Ferreira GMD, Hespanhol MC, de Paula Rezende J, dos Santos Pires AC, Gurgel LVA, da Silva LHM (2017) Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids Surfaces A: Physicochem Eng Asp 529:531–540. https://doi.org/10.1016/j.colsurfa.2017.06.021

    Article  CAS  Google Scholar 

  58. Pouran SR, Raman AAA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35. https://doi.org/10.1016/j.jclepro.2013.09.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are also grateful to the Laboratory for Research and Development of Methodologies for Crude Oil Analysis (LabPetro) and to the Laboratory of Air Quality, both located at the Federal University of Espírito Santo (UFES), for the use of their experimental facilities.

Funding

This study was funded by the Brazilian agencies FAPES (grants 280/2021 and 495/2021), CAPES, and CNPq (grant 408001/2016–0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Gonçalves, C. S. Schettino or J. C. C. Freitas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (PDF 556 KB)

Supplementary file2 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, G.R., Schettino, M.A., Schettino, C.S. et al. Synthesis of iron phosphide nanoparticles dispersed in activated carbon and their application in Fenton processes. J Nanopart Res 24, 193 (2022). https://doi.org/10.1007/s11051-022-05562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05562-9

Keywords

Navigation