Skip to main content
Log in

Synthesis of SnO2 Nanowires on Quartz and Silicon Substrates for Gas Sensors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tin oxide nanowires (SnO2 NWs) were grown on quartz and silicon substrates via a modified chemical vapor deposition (CVD). Film of gold nanoparticle deposited on both types of substrates using the direct current DC-sputtering technique. The structure and morphology of the produced material were characterized by using atomic force microscopy, X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible (UV–Vis) techniques. The XRD and SEM analysis confirmed the formation of tetragonal SnO2 NWs with a wire length of 10–20 μm and a diameter of 40–100 nm. The UV–Vis spectrum shows a strong absorption peak in the UV and others in the visible regions. The bandgap was calculated for SnO2 NWs grown on a quartz substrate within the value of 3.2 eV. It is slightly lower than the bandgap value of bulk. The successfully synthesized SnO2 NWs via CVD with a large aspect ratio in the range of 250–200 was proved to be quite promising nanomaterials to use for sensor fabrication towards ethanol gas at room temperature. The high sensitivity of 2.7 at an ethanol gas concentration of 500 parts per million (ppm) was achieved. The proposed sensing mechanism of SnO2 NWs towards ethanol gas was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Tharsika, A.S.M. Haseeb, S.A. Akbar, M.F.M. Sabri, Ceram. Int. 40(3), 5039–5042 (2014). https://doi.org/10.1016/j.ceramint.2013.08.142

    Article  CAS  Google Scholar 

  2. M.-R. Yang, S.-Y. Chu, Integr. Ferroelectr. 78(1), 299–307 (2006). https://doi.org/10.1080/10584580600663490

    Article  CAS  Google Scholar 

  3. H.W. Kim, S.H. Shim, J. Alloy. Compd. 426(1–2), 286–289 (2006). https://doi.org/10.1016/j.jallcom.2006.01.093

    Article  CAS  Google Scholar 

  4. D. Venkatesh, S. Pavalamalar, K. Anbalagan, J. Inorg. Organomet. Polym. 29(3), 939–953 (2019). https://doi.org/10.1007/s10904-018-01069-w

    Article  CAS  Google Scholar 

  5. Y.-E. Miao, S. He, Y. Zhong, Z. Yang, W.W. Tjiu, T. Liu, Electrochim. Acta 99, 117–123 (2013). https://doi.org/10.1016/j.electacta.2013.03.063

    Article  CAS  Google Scholar 

  6. S. Aarya, Y. Kumar, R.K. Chahota, J. Inorg. Organomet. Polym. 30(2), 269–290 (2020). https://doi.org/10.1007/s10904-019-01208-x

    Article  CAS  Google Scholar 

  7. D. Vasanth Raj, N. Ponpandian, D. Mangalaraj, C. Viswanathan, AIP Conf Proc. 1536, 151 (2013). https://doi.org/10.1063/1.4810145

    Article  CAS  Google Scholar 

  8. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Nanotechnology 22(33), 335702 (2011). https://doi.org/10.1088/0957-4484/22/33/335702

    Article  CAS  PubMed  Google Scholar 

  9. F. Fang, J. Futter, A. Markwitz, J. Kennedy, Nanotechnology 20(24), 245502 (2009). https://doi.org/10.1088/0957-4484/20/24/245502

    Article  CAS  PubMed  Google Scholar 

  10. K. Kaviyarasu, G.T. Mola, S.O. Oseni, K. Kanimozhi, C.M. Magdalane, J. Kennedy, M. Maaza, J. Mater. Sci-Mater. Electron 30(1), 147–158 (2019). https://doi.org/10.1007/s10854-018-0276-6

    Article  CAS  Google Scholar 

  11. S.S. Rathnakumar, K. Noluthando, A.J. Kulandaiswamy, J.B.B. Rayappan, K. Kasinathan, J. Kennedy, M. Maaza, Sens. Actuat. B-Chem. 293, 100–106 (2019). https://doi.org/10.1016/j.snb.2019.04.141

    Article  CAS  Google Scholar 

  12. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater. Sci. 60, 208–337 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  CAS  Google Scholar 

  13. A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Mater. Chem. Phys. 115(1), 196–199 (2009). https://doi.org/10.1016/j.matchemphys.2008.11.028

    Article  CAS  Google Scholar 

  14. N. Najafi, S.M. Rozati, Acta Phys. Pol. A 131(1), 222–225 (2017). https://doi.org/10.12693/aphyspola.131.222

    Article  CAS  Google Scholar 

  15. Y.J. Kwon, S.Y. Kang, A. Mirzaei, M.S. Choi, J.H. Bang, S.S. Kim, & H. W. Kim Sens. Actuat. B-Chem. 249, 656–666 (2017). https://doi.org/10.1016/j.snb.2017.04.053

    Article  CAS  Google Scholar 

  16. N. Bhardwaj, S. Kuriakose, S. Mohapatra, J. Alloy. Compd. 592, 238–243 (2014). https://doi.org/10.1016/j.jallcom.2013.12.268

    Article  CAS  Google Scholar 

  17. C. Ristoscu, L. Cultrera, A. Dima, A. Perrone, R. Cutting, H.L. Du, A. Busiakiewicz, Z. Klusek, P.K. Datta, S.R. Rose, Appl. Surf. Sci. 247(1–4), 95–100 (2005). https://doi.org/10.1016/j.apsusc.2005.01.171

    Article  CAS  Google Scholar 

  18. M.U. Khalid, S.R. Khan, S. Jamil, J. Inorg. Organomet. Polym. 28(1), 168–176 (2018). https://doi.org/10.1007/s10904-017-0687-5

    Article  CAS  Google Scholar 

  19. S. Haq, W. Rehman, M. Waseem, M.U. Rehman, K.H. Shah, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01256-3

    Article  Google Scholar 

  20. W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, S.-H. Hong, Nanotechnology 21(24), 245605 (2010). https://doi.org/10.1088/0957-4484/21/24/245605

    Article  CAS  PubMed  Google Scholar 

  21. PD File, Joint Committee on powder diffraction standards (JCPDS), vol. 10 (International Centre for Diffraction Data, Newtown Square, 1997), pp. 91–95

    Google Scholar 

  22. E.F. Keskenler, G. Turgut, S. Doğan, Superlattice. Microst. 52(1), 107–115 (2012). https://doi.org/10.1016/j.spmi.2012.04.002

    Article  CAS  Google Scholar 

  23. V. Geraldo, L.V.A. Scalvi, M.J. Saeki, T.J. Pereira, C.V. Santilli, Rev. Bras. Apl. Vácuo 22(1), 17–21 (2008). https://doi.org/10.17563/rbav.v22i1.173

    Article  Google Scholar 

  24. L. Cheng, M.-W. Shao, D. Chen, D.D. Duo Ma, S.-T. Lee, CrystEngComm 12(5), 1536 (2010). https://doi.org/10.1039/b911664h

    Article  CAS  Google Scholar 

  25. M. Maleki, S.M. Rozati, B. Mater, Bull. Mater. Sci. 36(2), 217–221 (2013). https://doi.org/10.1007/s12034-013-0460-5

    Article  CAS  Google Scholar 

  26. J. Huang, Y. Liu, Y. Wu, X. Li, Am. J. Anal. Chem. 8(1), 60–71 (2017). https://doi.org/10.4236/ajac.2017.81005

    Article  CAS  Google Scholar 

  27. S.P. Banu, T.S. Kumaran, S. Nirmala, J. Dhanakodi, Am. J. Eng. Res. 2(12), 131–135 (2013)

    Google Scholar 

  28. S. Luo, P.K. Chu, W. Liu, M. Zhang, C. Lin, Appl. Phys. Lett. 88(18), 183112 (2006). https://doi.org/10.1063/1.2201617

    Article  CAS  Google Scholar 

  29. N.D. Khoang, D.D. Trung, N. Van Duy, N.D. Hoa, N. Van Hieu, Sens. Actuat. B-Chem. 174, 594–601 (2012). https://doi.org/10.1016/j.snb.2012.07.118

    Article  CAS  Google Scholar 

  30. D.T. Thanh Le, D.D. Trung, N.D. Chinh, B.T. Thanh Binh, H.S. Hong, N. Van Duy, N. Duc Hoa, N. Van Hieu, Curr. Appl. Phys. 13(8), 1637–1642 (2013). https://doi.org/10.1016/j.cap.2013.06.024

    Article  Google Scholar 

  31. Z. Cai, S. Park, J. Mater. Res. Technol. 9(1), 271–281 (2020)

    Article  CAS  Google Scholar 

  32. A.P. Shama, P. Dhakal, D.K. Pradhan, M.K. Behera, B. Xiao, M. Bahoura, Aip Adv. 8(9), 095219 (2018)

    Article  CAS  Google Scholar 

  33. S.H. Li, F.F. Meng, Z. Chu, T. Luo, F.M. Peng, Z. Jin, Adv. Cond. Matter. Phys. 2017, 6 (2017). https://doi.org/10.1155/2017/9720973

    Article  CAS  Google Scholar 

  34. K.S. Choi, S. Park, S.P. Chang, Sens. Actuat. B-Chem. 238, 871–879 (2017). https://doi.org/10.1016/j.snb.2016.07.146

    Article  CAS  Google Scholar 

  35. A.M. AkhirMaisara, K. Mohamed, S.A. Rezan, S.A. Hamid, D.H. Sabar, N.W. MustaphaWan, V.H. Nguyen, K.Y. Chan, A.S. Haseeb, W.Y. Hoong, Aust. J. Basic & Appl. Sci. 8(5), 552–557 (2014)

    Google Scholar 

  36. J.H. Liu, X.J. Huang, F.L. Meng, The dynamic measurement of SnO2 gas sensor and their applications, in Science and technology of chemiresistor gas sensors, ed. by D.K. Aswal, S.K. Gupta (Nova Science Publishers, New York, 2007), pp. 177–214

    Google Scholar 

  37. A. Tricoli, M. Righettoni, A. Teleki, Angew. Chem. Int. Edit. 49(42), 7632–7659 (2010). https://doi.org/10.1002/anie.200903801

    Article  CAS  Google Scholar 

  38. N. Barsan, U. Weimar, J. Electroceram. 7(3), 143–167 (2001). https://doi.org/10.1023/a:1014405811371

    Article  CAS  Google Scholar 

  39. M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, J. Phys. Chem. C 117(34), 17850–17858 (2013). https://doi.org/10.1021/jp4061895

    Article  CAS  Google Scholar 

  40. Y. Shi, M. Wang, C. Hong, Z. Yang, J. Deng, X. Song, L. Wang, J. Shao, H. Liu, Y. Ding, Sens. Actuat. B-Chem. 177, 1027–1034 (2013). https://doi.org/10.1016/j.snb.2012.11.084

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljubouri Ali Abadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wafaa Khalid, K., Ali Abadi, A. & Abdulqader Dawood, F. Synthesis of SnO2 Nanowires on Quartz and Silicon Substrates for Gas Sensors. J Inorg Organomet Polym 30, 3294–3304 (2020). https://doi.org/10.1007/s10904-020-01617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01617-3

Keywords

Navigation