Skip to main content
Log in

Morphologically Controlled Synthesis of Cubes like Tin Oxide Nanoparticles and Study of its Application as Photocatalyst for Congo Red Degradation and as Fuel Additive

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tin oxide nanocubes are synthesized by hydrothermal approach by using the stannic chloride as precursor salt and sodium hydroxide as precipitating agent in aqueous media. Synthesized product is analyzed by various techniques: X-ray powder diffraction analysis (XRD) and scanning electron microscopy (SEM). Structural composition and parameters of the product are analyzed by (XRD). Morphology of the product is analyzed by (SEM). These synthesized nanocubes are used in two applications: (1) as a photocatalyst and (2) as a fuel additive. Synthesized nanoparticles are used as photocatalyst for the degradation of an organic dye (Congo red) in aqueous medium. Photocatalytic degradation kinetics of dye is monitored at different concentrations of hydrogen peroxide and catalyst in the presence of sunlight. The percentage conversion of dye is also calculated for different concentrations of hydrogen peroxide and catalyst. Efficiency of fuel is analyzed by studying various parameters: flash point, fire point, cloud point, pour point, kinematic viscosity, specific gravity and calorific value at different dosage of SnO2 (10, 20, 30 and 40 ppm). It is found that values of these parameters changes significantly by changing the dosage of catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Babar, S. Shinde, A. Moholkar, K. Rajpure, J. Alloys Compd. 505, 743–749 (2010)

    Article  CAS  Google Scholar 

  2. S. Jamil, M.R.S.A. Janjua, S.R. Khan, N. Jahan, Mater. Res. Exp. 4, 015902–015912 (2017)

    Article  Google Scholar 

  3. S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Nanomedicine 6, 570–574 (2010)

    Article  CAS  Google Scholar 

  4. M.U. Niemann, S.S. Srinivasan, A.R. Phani, A. Kumar, D.Y. Goswami, E.K. Stefanakos, J. Nanomater. (2008). doi:10.1155/2008/950967

    Google Scholar 

  5. A. Chen, S. Chatterjee, Chem. Soc. Rev, 42, 5425–5438 (2013)

    Article  CAS  Google Scholar 

  6. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Adv. Drug Del. Rev. 63, 24–46 (2011)

    Article  CAS  Google Scholar 

  7. P.A. Chen, Adv. Drug Del. Rev. 24, 27–31 (2010)

    Google Scholar 

  8. R. Brayner, S.A. Dahoumane, C. Yéprémian, C. Djediat, M. Meyer, A. Couté, F. Fiévet, Langmuir 26, 6522–6528 (2010)

    Article  CAS  Google Scholar 

  9. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7, 4871–4888 (2012)

    CAS  Google Scholar 

  10. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005)

    Article  CAS  Google Scholar 

  11. M. Gondal, T.A. Saleh, Q. Drmosh, Appl. Surf. Sci. 258, 6982–6986 (2012)

    Article  CAS  Google Scholar 

  12. M. Allen, D. Willits, M. Young, T. Douglas, Inorg. Chem 42, 6300–6305 (2003)

    Article  CAS  Google Scholar 

  13. H. Wang, A.L. Rogach, Chem. Mater. 26, 123–133 (2013)

    Article  CAS  Google Scholar 

  14. A. Shalan, I. Osama, M. Rashad, I. Ibrahim, J. Mater. Sci. 25, 303–310 (2014)

    CAS  Google Scholar 

  15. S.S. Lekshmy, K. Joy, J. Sol–Gel Sci. Technol. 67, 29–38 (2013)

    Article  Google Scholar 

  16. S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Adv. Funct. Mater. 15, 1845–1850 (2005)

    Article  CAS  Google Scholar 

  17. C. Nayral, E. Viala, P. Fau, F. Senocq, J.C. Jumas, A. Maisonnat, B. Chaudret, Methods 4082, 4090 (2000)

    Google Scholar 

  18. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, J. Phys. Chem. B 109, 8774–8778 (2005)

    Article  CAS  Google Scholar 

  19. P.V. Viet, C.M. Thi, L.V. Hieu, J. Nanomater. 2016, 6 (2016)

    Google Scholar 

  20. J. Ba, J. Polleux, M. Antonietti, M. Niederberger, Adv. Mater. 17, 2509–2512 (2005)

    Article  CAS  Google Scholar 

  21. J. Zhang, L. Gao, J. Solid State Chem. 177, 1425–1430 (2004)

    Article  CAS  Google Scholar 

  22. D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137–142 (2004)

    Article  CAS  Google Scholar 

  23. S. Habibzadeh, A. Kazemi-Beydokhti, A.A. Khodadadi, Y. Mortazavi, S. Omanovic, M. Shariat-Niassar, Chem. Eng. J. 156, 471–478 (2010)

    Article  CAS  Google Scholar 

  24. E. Najafi, M. Kheirkhahi, M.M. Amini, S.W. Ng, J. Inorg. Organomet. Polym. Mater. 23, 1015–1022 (2013)

    Article  CAS  Google Scholar 

  25. M.M. Amini, E. Najafi, P.H. Poor, P. Karami, B. Mohammadi, A. Olyaei, S.W. Ng, J. Inorg. Organomet. Polym. Mater. 25, 1137–1150 (2015)

    Article  CAS  Google Scholar 

  26. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. 119, 764–767 (2007)

    Article  Google Scholar 

  27. L.-Y. Jiang, X.-L. Wu, Y.-G. Guo, L.-J. Wan, J. Phys. Chem. C 113, 14213–14219 (2009)

    Article  CAS  Google Scholar 

  28. M.A. Hossain, G. Yang, M. Parameswaran, J.R. Jennings, Q. Wang, J. Phys. Chem. C 114, 21878–21884 (2010)

    Article  CAS  Google Scholar 

  29. L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. Nanostruct. 5, 47–53 (2015)

    Google Scholar 

  30. S. Karthikeyan, A. Elango, A. Prathima, Indian J. Chem. Technol. 21, 73 (2014)

    Google Scholar 

  31. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Mater. Sci. Pol. 32, 98–101 (2014)

    Article  CAS  Google Scholar 

  32. M. Choudhary, N.K. Singh, R. Dwivedi, V. Mishra, J. Mater. Sci. 24, 752–757 (2013)

    CAS  Google Scholar 

  33. A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118–124 (2010)

    Article  Google Scholar 

  34. X.W. Lou, C. Yuan, L.A. Archer, Small 3, 261–265 (2007)

    Article  CAS  Google Scholar 

  35. H.C. Chiu, C.S. Yeh, J. Phys. Chem. C 111, 7256–7259 (2007)

    Article  CAS  Google Scholar 

  36. G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, Sens. Actuators B 77, 116–121 (2001)

    Article  CAS  Google Scholar 

  37. J. Zhang, L. Gao, Mater. Chem. Phys. 87, 10–13 (2004)

    Article  CAS  Google Scholar 

  38. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, J. Hazard. Mater. 175, 33–44 (2010)

    Article  CAS  Google Scholar 

  39. S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Bioresour. Technol. 100, 2803–2809 (2009)

    Article  CAS  Google Scholar 

  40. M. Ghaedi, M.N. Biyareh, S.N. Kokhdan, S. Shamsaldini, R. Sahraei, A. Daneshfar, S. Shahriyar, Mater. Sci. Eng. C 32, 725–734 (2012)

    Article  CAS  Google Scholar 

  41. R. Begum, K. Naseem, Z.H. Farooqi, J. Sol–Gel Sci. Technol. 77, 497–515 (2016)

    Article  CAS  Google Scholar 

  42. Z.H. Farooqi, A. Ijaz, R. Begum, K. Naseem, M. Usman, M. Ajmal, U. Saeed, Polym. Compos. (2016). doi:10.1002/pc.23980

    Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to the Department of Chemistry, University of Agriculture, Faisalabad Pakistan for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanza Rauf Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M.U., Khan, S.R. & Jamil, S. Morphologically Controlled Synthesis of Cubes like Tin Oxide Nanoparticles and Study of its Application as Photocatalyst for Congo Red Degradation and as Fuel Additive. J Inorg Organomet Polym 28, 168–176 (2018). https://doi.org/10.1007/s10904-017-0687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0687-5

Keywords

Navigation