Skip to main content
Log in

Fabrication of Novel ZnSeO3 Anchored on g-C3N4 Nanosheets: An Outstanding Photocatalyst for the Mitigation of Pesticides and Pharmaceuticals

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the scope, the developed novel ZnSeO3/g-C3N4 nanocomposites and characterized in detail. Interestingly, the as prepared nanocomposites examined for the detoxification of organic pollutants like methyl parathion (MP) and cefuroxime drug (CF) under Visible light irradiation. The synthesized ZnSeO3/g-C3N4 nanocomposites were characterized by various techniques such as X-ray diffraction (XRD), fourier transform infra-red (FTIR), UV–Vis diffuse reflectance spectra (DRS/UV–Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectra (EDX). The photocatalytic studies carried out by UV–Visible Spectroscopy it was exhibited that ZnSeO3/g-C3N4 nanocomposites photocatalyst was a superior photocatalytic performance with the degradation efficiency of an analytic solution of MP and CF observed about 120 mins and 80 mins. The reactive oxidative species are ·OH radical and superoxide radical O2 involved in the photocatalytic reaction under the source of visible light irradiation by trapping experiments. After the completion of degradation process, the photocatalyst was reused by centrifugation method. The reusability of photocatalyst was highly stable up to eighth cycle.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Zheng, F. Pi, Y. Wang, H. Xu, Y. Zhang, X. Sun, Photocatalytic degradation of Acephate, Omethoate, and Methyl parathion by Fe3O4@ SiO2@ mTiO2 nanomicrospheres. J. Hazard. Mater. 315, 11–22 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.064

    Article  CAS  PubMed  Google Scholar 

  2. V.G. Bessergenev, M.C. Mateus, I.M. Morgado, M. Hantusch, E. Burkel, Photocatalytic reactor, CVD technology of its preparation and water purification from pharmaceutical drugs and agricultural pesticides. Chem. Eng. J. 312, 306–316 (2017). https://doi.org/10.1016/j.cej.2016.11.148

    Article  CAS  Google Scholar 

  3. S.Y. Lee, S.J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19(6), 1761–1769 (2013). https://doi.org/10.1016/j.jiec.2013.07.012

    Article  CAS  Google Scholar 

  4. P. Latha, R. Dhanabackialakshmi, P.S. Kumar, S. Karuthapandian, Synergistic effects of trouble free and 100% recoverable CeO2/Nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants. Sep. Purif. Technol. 168, 124–133 (2016). https://doi.org/10.1016/j.seppur.2016.05.038

    Article  CAS  Google Scholar 

  5. R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 12(35), 13563–13570 (2008). https://doi.org/10.1021/jp802729a

    Article  CAS  Google Scholar 

  6. D. Rajamanickam, P. Dhatshanamurthi, M. Shanthi, Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination. Spectrochim. Acta Part A 138, 489–498 (2015). https://doi.org/10.1016/j.saa.2014.11.070

    Article  CAS  Google Scholar 

  7. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine-B dye for textile engineering application. J. Alloys Compd. 727, 1324–1337 (2017). https://doi.org/10.1016/j.jallcom.2017.08.209

    Article  CAS  Google Scholar 

  8. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J. Photochem. Photobiol B 163, 77–86 (2016). https://doi.org/10.1016/j.jphotobiol.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  9. T. Hong, Z. Liu, H. Liu, J. Liu, X. Zhang, J. Han, B. Wang, Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. J. Mater. Chem. A 3(8), 4239–4247 (2015). https://doi.org/10.1039/C4TA05973E

    Article  CAS  Google Scholar 

  10. K. Chakraborty, S. Chakrabarty, T. Pal, S. Ghosh, Synergistic effect of zinc selenide–reduced graphene oxide towards enhanced solar light-responsive photocurrent generation and photocatalytic 4-nitrophenol degradation. New J. Chem. 41(11), 4662–4671 (2017). https://doi.org/10.1039/C6NJ04022E

    Article  CAS  Google Scholar 

  11. L. An, H. Onishi, Electron–hole recombination controlled by metal doping sites in NaTaO3 photocatalysts. ACS Catal. 5(6), 3196–3206 (2015). https://doi.org/10.1021/acscatal.5b00484

    Article  CAS  Google Scholar 

  12. L.T. Vlaev, V.G. Georgieva, G.G. Gospodinov, Kinetics of isothermal decomposition of ZnSeO3 and CdSeO3. J. Therm. Anal. Calorim. 79(1), 163–168 (2005). https://doi.org/10.1007/s10973-004-0579-0

    Article  CAS  Google Scholar 

  13. Y. Ma, F. Le Formal, A. Kafizas, S.R. Pendlebury, J.R. Durrant, Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. J. Mater. Chem. A 3(41), 20649–20657 (2015). https://doi.org/10.1039/C5TA05826K

    Article  CAS  Google Scholar 

  14. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  15. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1), 15–37 (2015). https://doi.org/10.1039/C4NR03008G

    Article  CAS  PubMed  Google Scholar 

  16. F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, G. Liu, Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl. Catal. B 207, 103–113 (2017). https://doi.org/10.1016/j.apcatb.2017.02.024

    Article  CAS  Google Scholar 

  17. Y. Hong, C. Li, G. Zhang, Y. Meng, B. Yin, Y. Zhao, W. Shi, Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem. Eng. J. 299, 74–84 (2016). https://doi.org/10.1016/j.cej.2016.04.092

    Article  CAS  Google Scholar 

  18. T. Iong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6(4), 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922

    Article  CAS  Google Scholar 

  19. Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1), 1103–1112 (2017). https://doi.org/10.1021/acsnano.6b08251

    Article  CAS  PubMed  Google Scholar 

  20. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  CAS  Google Scholar 

  21. J. Liu, Effect of phosphorus doping on electronic structure and photocatalytic performance of g-C3N4: insights from hybrid density functional calculation. J. Alloy. Compd. 672, 271–276 (2016). https://doi.org/10.1016/j.jallcom.2016.02.094

    Article  CAS  Google Scholar 

  22. R. Karthik, J. Vinoth Kumar, S.M. Chen, C. Karuppiah, Y.H. Cheng, V. Muthuraj, A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces 9(7), 6547–6559 (2017). https://doi.org/10.1021/acsami.6b14242

    Article  CAS  PubMed  Google Scholar 

  23. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, L. Ding, Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110(42), 20865–20871 (2006). https://doi.org/10.1021/jp063239w

    Article  CAS  PubMed  Google Scholar 

  24. K. Prakash, K.P. Senthil, P. Latha, R. Shanmugam, S. Karuthapandian, Dry synthesis of water lily flower like SrO2/g-C3N4 nanohybrids for the visible light induced superior photocatalytic activity. Mater. Res. Bull. 93, 112–122 (2017). https://doi.org/10.1016/j.materresbull.2017.04.018

    Article  CAS  Google Scholar 

  25. M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17(14), 1789–1792 (2005). https://doi.org/10.1002/adma.200401756

    Article  CAS  Google Scholar 

  26. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion- implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A 148(1–3), 257–261 (2002). https://doi.org/10.1016/S1010-6030(02)00051-5

    Article  CAS  Google Scholar 

  27. A. Sanjuan, G. Aguirre, M. Alvaro, H. Garcıa, S. Rengaraj, X.Z. Li, P.A. Tanner, Z.F. Pan, G.K.H. Pang, Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2. J. Mol. Catal. A 247(1–2), 36–43 (2006). https://doi.org/10.1016/j.molcata.2005.11.030

    Article  CAS  Google Scholar 

  28. A. Sanjuan, G. Aguirre, M. Alvaro, H. Garcıa, 2, 4, 6-Triphenylpyrylium ion encapsulated within Y zeolite as photocatalyst for the degradation of methyl parathion. Water Res. 34(1), 320–326 (2000). https://doi.org/10.1016/S0043-1354(99)00103-7

    Article  CAS  Google Scholar 

  29. A. Pourtaheri, A. Nezamzadeh-Ejhieh, Enhancement in photocatalytic activity of NiO by supporting onto an Iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule. Spectrochim. Acta Part A 137, 338–344 (2015). https://doi.org/10.1016/j.saa.2014.08.058

    Article  CAS  Google Scholar 

  30. N.P. Huse, A.S. Dive, D.S. Upadhye, S.B. Bagul, K.P. Gattu, R. Sharma, Effect of quantum confinement on photosensitivity in ZnS thin film grown by facile chemical bath deposition. Ferroelectrics 519(1), 170–177 (2017). https://doi.org/10.1080/00150193.2017.1361253

    Article  CAS  Google Scholar 

  31. P.S. Kumar, S.L. Prabavathi, P. Indurani, S. Karuthapandian, V. Muthuraj, Light assisted synthesis of hierarchically structured Cu/CdS nanorods with superior photocatalytic activity, stability and photocatalytic mechanism. Sep. Purif. Technol. 172, 192–201 (2017). https://doi.org/10.1016/j.seppur.2016.08.017

    Article  CAS  Google Scholar 

  32. C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catal. Commun. 12(9), 826–829 (2011). https://doi.org/10.1016/j.catcom.2011.01.017

    Article  CAS  Google Scholar 

  33. P. Karthik, R. Vinoth, S.G. Babu, M. Wen, T. Kamegawa, H. Yamashita, B. Neppolian, Synthesis of highly visible light active TiO2 2-naphthol surface complex and its application in photocatalytic chromium (vi) reduction. RSC Adv. 5(50), 39752–39759 (2015). https://doi.org/10.1039/C5RA03831F

    Article  CAS  Google Scholar 

  34. P.S. Kumar, M. Selvakumar, S.G. Babu, S. Karuthapandian, Veteran cupric oxide with new morphology and modified bandgap for superior photocatalytic activity against different kinds of organic contaminants (acidic, azo and triphenylmethane dyes). Mater. Res. Bull. 83, 522–533 (2016). https://doi.org/10.1016/j.materresbull.2016.06.043

    Article  CAS  Google Scholar 

  35. Z. Chen, D. Li, W. Zhang, Y. Shao, T. Chen, M. Sun, X. Fu, Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J. Phys. Chem. C 113(11), 4433–4440 (2009)

    Article  CAS  Google Scholar 

  36. T. Pauporte, J. Rathouský, Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111(21), 7639–7644 (2007)

    Article  CAS  Google Scholar 

  37. Z. Jiang, J. Xie, In situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity. RSC Adv. 6(4), 3186–3197 (2016). https://doi.org/10.1039/C5RA22176E

    Article  CAS  Google Scholar 

  38. J. Zhang, L. Li, S. Wang, T. Huang, Y. Hao, Y. Qi, Multi-mode photocatalytic degradation and photocatalytic hydrogen evolution of honeycomb-like three- dimensionally ordered macroporous composite Ag/ZrO2. RSC Adv. 6(17), 13991–14001 (2016). https://doi.org/10.1039/C5RA18964K

    Article  CAS  Google Scholar 

  39. P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian, S. Chattopadhyay, Novel CuO/chitosan nanocomposite thin film: facile hand- picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 5(71), 57493–57501 (2015). https://doi.org/10.1039/C5RA08783J

    Article  CAS  Google Scholar 

  40. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene–TiO2 composite photocatalyst: mechanism and intermediates analysis. Chem. Eng. J. 264, 113–124 (2015). https://doi.org/10.1016/j.cej.2014.10.011S

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the College managing board, Principal and Head of the department, VHNSN College for providing necessary research facilities. Authors also acknowledges to KALASALINGAM UNIVERSITY and SFR College for utilize the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuthapandian Swaminathan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moorthy, S., Moorthy, G. & Swaminathan, K. Fabrication of Novel ZnSeO3 Anchored on g-C3N4 Nanosheets: An Outstanding Photocatalyst for the Mitigation of Pesticides and Pharmaceuticals. J Inorg Organomet Polym 30, 4664–4676 (2020). https://doi.org/10.1007/s10904-020-01615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01615-5

Keywords

Navigation