Skip to main content
Log in

The Characteristics of the Atomic Structure and Morphology of the Ni-Cores in the Ni/Au Core–Shell Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The Ni-nanoparticles, being similar to the nanocores of the Ni/Au core–shell nanoparticles, are made up of the structural domains with the dimensions about 1 nm. It is experimentally shown in this work for the first time by the combination of the small-angle X-ray scattering (SAXS) and the powder X-ray diffraction (XRD). The atomic structure of these domains is not a face-centered cubic lattice (FCC) inherent in the bulk state of Ni. This fact has been established by using the transmission electron microscopy (TEM) and XRD, calculated and confirmed by the observed features of an anodic oxidation and the differential scanning calorimetry (DSC) results for the investigated Ni-nanoparticles. Thus, the Ni-nanocores are composed of the domains with a structure formed by the icosahedra in the synthesis often used to obtain the core–shell nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Bao, H. Calderon, K.M. Krishnan, Synthesis and characterization of magnetic-optical Co–Au core-shell nanoparticles. J. Phys. Chem. C 111(5), 1941–1944 (2007). https://doi.org/10.1021/jp066871y

    Article  CAS  Google Scholar 

  2. J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E.E. Carpenter, C.J. O’Connor, Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem. 159, 26–31 (2001). https://doi.org/10.1006/jssc.2001.9117

    Article  CAS  Google Scholar 

  3. S.J. Cho, J.C. Idrobo, J. Olamit, K. Liu, N.D. Browning, S.M. Kauzlarich, Grown mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater. 17(12), 3181–3186 (2005). https://doi.org/10.1021/cm0500713

    Article  CAS  Google Scholar 

  4. Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.J. Hu, Yu.J. Xu, L.P. Wen, S.H. Yu, Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407–1411 (2010). https://doi.org/10.1007/s40820-017-0135-7

    Article  CAS  PubMed  Google Scholar 

  5. J. Park, J. Cheon, Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 123(24), 5743–5746 (2001). https://doi.org/10.1021/ja0156340

    Article  CAS  PubMed  Google Scholar 

  6. D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, S. Liu, Properties of core-shell Ni–Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion. Chem. Mater. 19(14), 3399–3405 (2007). https://doi.org/10.1021/cm070182x

    Article  CAS  Google Scholar 

  7. J. Zhang, M. Post, T. Veres, Z.J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, B. Simard, Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J. Phys. Chem. B 110(14), 7122–7128 (2006). https://doi.org/10.1021/jp0560967

    Article  CAS  PubMed  Google Scholar 

  8. X.B. Zhang, J.M. Yan, S. Han, H. Shioyama, Q. Xu, Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalyst for ammonia borane oxidation: the role of crystallinity of the core. J. Am. Chem. Soc. 131(8), 2778–2779 (2009). https://doi.org/10.1021/ja808830a

    Article  CAS  PubMed  Google Scholar 

  9. G. Wang, H. Wu, D. Wexler, H. Liu, O. Savadogo, Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. J. Alloys Compd. 503(1), L1–L4 (2010). https://doi.org/10.1016/j.jallcom.2010.04.236

    Article  CAS  Google Scholar 

  10. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009). https://doi.org/10.1002/anie.200802248

    Article  CAS  Google Scholar 

  11. M. Schnedlitz, M. Lasserus, R. Meyer, D. Knez, F. Hofer, W.E. Ernst, A.W. Hauser, Stability of core-shell nanoparticles for catalysis at elevated temperatures: structural inversion in the Ni-Au system observed at atomic resolution. Chem. Mater. 30(3), 1113–1120 (2018). https://doi.org/10.1021/acs.chemmater.7b05075

    Article  CAS  Google Scholar 

  12. M. Lorenz, M. Schulze, XPS analysis of electrochemically of oxidized nickel surfaces. Fresenius’ J. Anal. Chem. 365(1–3), 154–157 (1999). https://doi.org/10.1007/s002160051463

    Article  CAS  Google Scholar 

  13. I.G. Casella, M.R. Guascito, M.G. Sannazzaro, Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold surface electrodes. J. Electroanal. Chem. 462, 202–210 (1999). https://doi.org/10.1016/S0022-0728(98)00413-6

    Article  CAS  Google Scholar 

  14. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012). https://doi.org/10.1039/C1CS15166E

    Article  CAS  PubMed  Google Scholar 

  15. V. Klimov, Nanoplasmonics (Pan Stanford Publishing Pte Ltd, Singapore, 2012)

    Google Scholar 

  16. J.A. Zakharov, N.K. Yeremenko, A.S. Bogomjakov, R.P. Kolmykov, A.N. Yeremenko, Nanosized core-shell Ni/Au system and its properties. Eurasian Chem.-Technol. J. 17(2), 159–164 (2015). https://doi.org/10.18321/ectj206

    Article  CAS  Google Scholar 

  17. Yu.A. Zakharov, V.M. Pugachev, R.P. Kolmykov, D.M. Russakov, V.G. Dodonov, I.I. Obraztsova, I.P. Prosvirin, N.V. Ivanova, N.N. Ivanov, Morphology of Ni (core)/Au (shell) nanoparticles. Gold Bull. 50(3), 225–234 (2017). https://doi.org/10.1007/s13404-017-0212-1

    Article  CAS  Google Scholar 

  18. V.G. Dodonov, V.M. Pugachev, Using of the method of X-ray diffraction for the analysis of the structure of ultra-disperse systems. KemSU Bull. 3(15), 131–136 (2003)

    Google Scholar 

  19. J.D. Gale, A.L. Rohl, The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003). https://doi.org/10.1080/0892702031000104887

    Article  CAS  Google Scholar 

  20. S. Fleming, A. Rohl, GDIS: a visualization program for molecular and periodic systems. Z. Kryst. 220, 580–584 (2005). https://doi.org/10.1524/zkri.220.5.580.65071

    Article  CAS  Google Scholar 

  21. Yu.A. Zakharov, V.M. Pugachev, V.G. Dodonov, R.P. Kolmykov, O.V. Vasil’eva, Phase composition and some properties of nanosized powders. Perspect. Mater. 4, 156–164 (2011)

    Google Scholar 

  22. Yu.A. Zakharov, A.N. Popova, R.P. Kolmykov, V.M. Pugachev, V.G. Dodonov, Synthesis and properties of nanosized metal powders of the iron group and their mutual systems. Perspect. Mater. S6, 249–254 (2008)

    Google Scholar 

  23. Yu.A. Zaharov, V.M. Pugachev, K.A. Datiy, A.N. Popova, A.S. Valnyukova, Nanostructured polymetallic powders to create new functional materials on its base. Key Eng. Mater. 670, 49–54 (2016). https://doi.org/10.4028/www.scientific.net/KEM.670.49

    Article  Google Scholar 

  24. A.D. Pomogailo, A.S. Rozenberg, I.E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000)

    Google Scholar 

  25. H. Yamashita, T. Funabiki, S. Yoshida, Structural modification towards metastable states and catalytic activity of an amorphous Ni–B alloy. J. Chem. Soc. Chem. Commun. 13, 868–869 (1984). https://doi.org/10.1039/C39840000868

    Article  Google Scholar 

  26. X.D. Liu, M. Umemoto, W. Deng, L.Y. Xiong, D.H. Pin, K. Lu, Characterization of nanocrystalline Ni33Zr67 alloy. J. Appl. Phys. 81, 1103 (1997). https://doi.org/10.1063/1.363984

    Article  CAS  Google Scholar 

  27. M.C. Biesinger, B.P. Paine, L.W.M. Lau, A. Gerson, RSC. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009). https://doi.org/10.1002/sia.3026

    Article  CAS  Google Scholar 

  28. C.W. Ong, H. Huang, B. Zheng, R.W.M. Kwok, Y.Y. Hui, W.M. Laua, X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy. J. Appl. Phys. 95, 3527–3534 (2004). https://doi.org/10.1063/1.1651321

    Article  CAS  Google Scholar 

  29. A. Hankin, G.H. Kelsal, Electrochemical recovery of nickel from nickel sulfamate plating effluents. J. Appl. Electrochem. 42, 629–643 (2012). https://doi.org/10.1007/s10800-012-0447-8

    Article  CAS  Google Scholar 

  30. V.M. Pugachev, Yu.V. Karpushkina, V.G. Dodonov, Yu.A. Zakharov Modeling of the reflex profile of nanostructured materials in doublet emission. 2-nd All-Russian Scientific Conference “Methods of studying the composition and structure of functional materials”, October 21–25, 2013, Novosibirsk, Russia: Collection of Abstracts, CD-ROM, ed. by S.V. Tsibulya/Novosibirsk: Institute of Catalysis, SB RAS, 2013, pp. 151–152. ISBN 978-5-906376-03-9

  31. V.G. Dodonov, V.M. Pugachev, A. Zaharov Yu, Determination of the surface structure peculiarities of nanoscale metal particles via small-angle X-ray scattering. Inorg. Mater. Appl. Res. 7(5), 624–634 (2016). https://doi.org/10.1134/S207511331605004X

    Article  Google Scholar 

Download references

Acknowledgements

The work is complete with the assistance of the comprehensive program of the FSI (Fundamental Scientific Investigations) of the Siberian Branch of the Russian Academy of Sciences (# АААА-А16-116122910066-3, V.45 project). The work has carried out using the research facilities of the FRC CCC SB RAS (The Analytical Scientific Centre of Carbonic material Composition and Structure, Kemerovo). The authors thank R.S. Islamov for linguistic support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors: YuZ wrote the article and made the general leadership of the work; RK wrote the article and its corresponding part, made all illustrations and calculations, prepared an English version of the manuscript; VP and VD took the XRD, and the SAXS measurements, and wrote the 5th part of the article; DR made the TEM experiments; IO made the synthesis of the Ni-NPs and the OAS experiments; IP made the XPS measurements; DY made the calculations of the XRD patterns; NI and NI made the electrochemical experiments; LH made the TMSA experiments. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to R. P. Kolmykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y.A., Kolmykov, R.P., Pugachev, V.M. et al. The Characteristics of the Atomic Structure and Morphology of the Ni-Cores in the Ni/Au Core–Shell Nanoparticles. J Inorg Organomet Polym 29, 22–32 (2019). https://doi.org/10.1007/s10904-018-0960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0960-2

Keywords

Navigation