Skip to main content
Log in

Nickel Based Paddle-Wheel Metal–Organic Frameworks Towards Adsorption of O3 and SO2 Molecules: Quantum-Chemical Calculations

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the interaction of O3 and SO2 molecules on the surface of nickel center open metal site (Ni-OMS) of Ni-paddle-wheel units (Ni2 (O2CL)4 [L=–CH3, –C6H5, and –CN)] has been investigated using density functional theory (DFT). We found important impacts of different linked functional groups towards O3 and SO2 molecules adsorption on Ni-OMS. While adsorption of O3 on Ni-OMS linked by different groups varies as C6H5 > CH3 > CN, different order (CN > C6H5 > CH3) is found for SO2 adsorption. As a result, charge allocation of Ni atom in Ni-OMS depends on the kind of linked group as well as type of adsorbate. For all systems, the changes in the electronic structure of Ni-OMS upon adsorption of above-mentioned molecules were followed by taking into account the optimized geometry, charge transfer, dipole moment, frontier molecular orbitals, and density of states. Our results confirm possibility of designing selective sensor/adsorbent by change in the kind of linked group within Ni-OMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 112, 836–868 (2012)

    Article  CAS  Google Scholar 

  2. H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)

    Article  CAS  Google Scholar 

  3. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional framework with channeling cavities for small molecules:{[M2 (4, 4′-bpy) 3 (NO3) 4]·xH2O} n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725–1727 (1997)

    Article  CAS  Google Scholar 

  4. S. Horike, S. Shimomura, S. Kitagawa, Soft porous crystals. Nat. Chem. 1, 695–704 (2009)

    Article  CAS  Google Scholar 

  5. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  CAS  Google Scholar 

  6. O. Shekhah, H. Wang, D. Zacher, R.A. Fischer, C. Woll, Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-Step route. Angew. Chem. Int. Ed. 48, 5038–5041 (2009).

    Article  CAS  Google Scholar 

  7. J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)

    Article  CAS  Google Scholar 

  8. G. Ferey, M. Latroche, C. Serre, T. Loiseau, F. Millange, A. Percheron-Guegan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003)

  9. K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y.J. Chabal, Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 24, 3153–3167 (2012)

    Article  CAS  Google Scholar 

  10. A.R. Millward, O.M. Yaghi, Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  11. P.D.C. Dietzel, Y. Morita, R. Blom, H. Fjellvag, An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal–oxygen chains. Angew. Chem. Int. Ed. 117, 6512–6516 (2005)

    Article  Google Scholar 

  12. R. Poloni, B. Smit, J.B. Neaton, CO2 capture by metal–organic frameworks with van der Waals density functionals. J. Phys. Chem. A 116, 4957–4964 (2012)

    Article  CAS  Google Scholar 

  13. K. Doitomi, H. Hirao, Hybrid computational approaches for deriving quantum mechanical insights into metal–organic frameworks. Tetrahedron Lett. 58, 2309–2317 (2017)

    Article  CAS  Google Scholar 

  14. L. Valenzano, B. Civalleri, K. Sillar, J. Sauer, Heats of adsorption of CO and CO2 in metal–organic frameworks: quantum mechanical study of CPO-27-M (M=Mg, Ni, Zn). J. Phys. Chem. C 115, 21777–21784 (2011)

    Article  CAS  Google Scholar 

  15. J. Park, H. Kim, S.S. Han, Y.J. Jung, Tuning metal–organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Phys. Chem. Lett. 3, 826–829 (2012)

    Article  CAS  Google Scholar 

  16. A.L. Dzubak, L.C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Ab initio carbon capture in open-site metal–organic frameworks. Nat. Chem. 4, 810–816 (2012)

    Article  CAS  Google Scholar 

  17. J. Getzschmann, I. Senkovska, D. Wallacher, M. Tovar, D. Fairen-Jimenez, T. Düren, J.M. van Baten, R. Krishna, S. Kaskel, Methane storage mechanism in the metal-organic framework Cu3 (btc) 2: an in situ neutron diffraction study. Micropor. Mesopor. Mater. 136, 50–58 (2010)

    Article  CAS  Google Scholar 

  18. S. Xiang, W. Zhou, J.M. Gallegos, Y. Liu, B. Chen, Exceptionally high acetylene uptake in a microporous metal–organic framework with open metal sites. J. Am. Chem. Soc. 131, 12415–12419 (2009)

    Article  CAS  Google Scholar 

  19. B. Jee, P.S. Petkov, G.N. Vayssilov, T. Heine, M. Hartmann, A. Poppl, A combined pulsed electron paramagnetic resonance spectroscopic and DFT analysis of the 13CO2 and 13CO adsorption on the metal–organic framework Cu2. 97Zn0. 03 (btc) 2. J. Phys. Chem. C 117, 8231–8240 (2013)

    Article  CAS  Google Scholar 

  20. S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P.S. Wheatley, R.E. Morris, A. Zecchina, Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys. Chem. Chem. Phys. 9, 2676–2685 (2007)

    Article  CAS  Google Scholar 

  21. V.K. Peterson, Y. Liu, C.M. Brown, C.J. Kepert, Neutron powder diffraction study of D2 sorption in Cu3 (1,3,5-benzenetricarboxylate) 2. J. Am. Chem. Soc. 128, 15578–15579 (2006)

    Article  CAS  Google Scholar 

  22. N.C. Jeong, B. Samanta, C.Y. Lee, O.K. Farha, J.T. Hupp, Coordination-chemistry control of proton conductivity in the iconic metal–organic framework material HKUST-1. J. Am. Chem. Soc. 134, 51–54 (2012)

    Article  CAS  Google Scholar 

  23. D. Farrusseng, C. Daniel, C. Gaudillere, U. Ravon, Y. Schuurman, C. Mirodatos, D. Dubbeldam, H. Frost, R.Q. Snurr, Heats of adsorption for seven gases in three metal–organic frameworks: systematic comparison of experiment and simulation. Langmuir 25, 7383–7388 (2009)

    Article  CAS  Google Scholar 

  24. D.A. Gomez, A.F. Combariza, G. Sastre, Confinement effects in the hydrogen adsorption on paddle wheel containing metal–organic frameworks. Phys. Chem. Chem. Phys. 14, 2508–2517 (2012)

    Article  CAS  Google Scholar 

  25. B. Supronowicz, A. Mavrandonakis, T. Heine, Interaction of small gases with the unsaturated metal centers of the HKUST-1 metal organic framework. J. Phys. Chem. C 117, 14570–14578 (2013)

    Article  CAS  Google Scholar 

  26. Y. Hijikata, S. Sakaki, Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation. Inorg. Chem. 53, 2417–2426 (2014)

    Article  CAS  Google Scholar 

  27. C. Zhou, L. Cao, S. Wei, Q. Zhang, L. Chen, A first principles study of gas adsorption on charged Cu BTC. Comput. Theor. Chem. 976, 153–160 (2011)

    Article  CAS  Google Scholar 

  28. M. Rubes, L. Grajciar, O. Bludsky, A.D. Wiersum, P.L. Llewellyn, P. Nachtigall, Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF. Chem. Phys. Chem. 13, 488–495 (2012)

    Article  CAS  Google Scholar 

  29. J.H. Bak, V.D. Le, J. Kang, S.H. Wei, Y.H. Kim, First-principles study of electronic structure and hydrogen adsorption of 3d transition metal exposed paddle wheel frameworks. J. Phys. Chem. C 116, 7386–7392 (2012)

    Article  CAS  Google Scholar 

  30. P. St Petkov, G.N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Wöll, T. Heine, Defects in MOFs: a thorough characterization. Chem. Phys. Chem. 13, 2025 – 2029 (2012)

    Article  CAS  Google Scholar 

  31. F.H. Allen, The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. B58, 380–388 (2002)

    Article  CAS  Google Scholar 

  32. G. Nathalie, Q. Gao, P.M. Forster, J.S. Chang, M. Noguès, S.E. Park, G. Férey, A.K. Cheetham, Nickel(II) phosphate VSB-5: a magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew. Chem. 40, 2831–2834 (2001)

    Article  Google Scholar 

  33. Z. Ru-Qiang, H. Sakurai, Q. Xu, Preparation, adsorption properties, and catalytic activity of 3D porous metal–organic frameworks composed of cubic building blocks and alkali-metal ions. Angew. Chem. 118, 2604–2608 (2006)

    Article  Google Scholar 

  34. P.M. Forster, J. Eckert, B.D. Heiken, J.B. Parise, J.W. Yoon, S.H. Jhung, J.S. Chang, A.K. Cheetham, Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. J. Am. Chem. Soc. 128, 16846–16850 (2006)

    Article  CAS  Google Scholar 

  35. C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010)

    Article  CAS  Google Scholar 

  36. M. Palanikumar, N. Stock, Investigation of porous Ni-based metal–organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg. Chem. 50, 5085–5097 (2011)

    Article  Google Scholar 

  37. A.S. Rad, E. Abedini, Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl. Surf. Sci. 360, 1041–1046 (2016)

    Article  CAS  Google Scholar 

  38. A.S. Rad, Adsorption of C2H2 and C2H4 on Pt-decorated graphene nanostructure: ab-initio study. Synth. Met. 211, 115–120 (2016)

    Article  CAS  Google Scholar 

  39. A.S. Rad, Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Phys. E 83, 135–140 (2016)

    Article  CAS  Google Scholar 

  40. S. Gholami, A.S. Rad, A. Heydarinasab, M. Ardjmand, Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study. J. Alloys Compd. 686, 662–668 (2016)

    Article  CAS  Google Scholar 

  41. A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 Nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comp. Theor. Chem. 1109, 1–9 (2017)

    Article  CAS  Google Scholar 

  42. A.S. Rad, A. Mirabi, M. Peyravi, M. Mirzaei, Nickel decorated B12P12 nano-clusters as a strong adsorbent for SO2 adsorption; quantum chemical calculation. Can. J. Phys. (2017). doi: 10.1139/cjp-2017-0119

    Google Scholar 

  43. A.S. Rad, K. Ayub, Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters. Mater. Chem. Phys. 194, 337–344 (2017)

    Article  CAS  Google Scholar 

  44. A.S. Rad, Chemisorption of BH3 and BF3 on aluminum nitride nanocluster: quantum-chemical investigations. J. Nanostruct. Chem. (2017). doi: 10.1007/s40097-017-0231-8

    Google Scholar 

  45. A.S. Rad, A DFT study on the nickel-decorated B12P12 nanoclusters. Can. J. Chem. 95, 845–850 (2017)

    Article  Google Scholar 

  46. A.S. Rad, S.G. Ateni, H. Tayebi, P. Valipour, V.P. Foukolaei, First-principles DFT study of SO2 and SO3 adsorption on 2PANI: a model for polyaniline response. J. Sulfur. Chem. 37, 622–631 (2016)

    Google Scholar 

  47. A.S. Rad, N. Nasimi, M. Jafari, D. Sadeghi Shabestari, E. Gerami, Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sens. Actuat. B 220, 641–651 (2015)

    Article  CAS  Google Scholar 

  48. A.S. Rad, P. Valipour, A. Gholizade, S.E. Mousavinezhad, Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem. Phys. Lett. 639, 29–35 (2015)

    Article  CAS  Google Scholar 

  49. A.S. Rad, M. Esfehanian, S. Maleki, G. Gharati, Application of carbon nanostructures towards SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J. Sulfur. Chem. 37, 176–188 (2016)

    Article  Google Scholar 

  50. A.S. Rad, Terthiophene as a model sensor for some atmospheric gases: theoretical study. Mol. Phys. 114, 584–591 (2016)

    Article  CAS  Google Scholar 

  51. A.S. Rad, S. Sadeghi Shabestari, S. Mohseni, S. Alijantabar Aghouzi, Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 237, 204–210 (2016)

    Article  CAS  Google Scholar 

  52. Gaussian 09, Revision D.01, M.J. Frisch et al., (Gaussian, Inc., Wallingford, 2009)

  53. M. Kazemi, A.S. Rad, Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: quantum chemical calculations. Superlatt. Microstruct. 106, 122–128 (2017)

    Article  CAS  Google Scholar 

  54. M.S.H. Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavid, Quantum Chemical Study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped. Phys. E 90(SWCNTs), 204–213 (2017)

    Article  Google Scholar 

  55. A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, Study on the electronic structure of Cr- and Ni-doped Fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diam. Relat. Mater. 77, 116–121 (2017)

    Article  CAS  Google Scholar 

  56. J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  57. S. Picozzi, S. Santucci, L. Lozzi, L. Valentini, B. Delley, Ozone adsorption on carbon nanotubes: the role of Stone–Wales defects. J. Chem. Phys. 120, 7147 (2004)

    Article  CAS  Google Scholar 

  58. M.H. Rahman, J.S. Thakur, L. Rimai, S. Perooly, R. Naik, L. Zhang, Dual-mode operation of a Pd/AlN/SiC device for hydrogen sensing. Sens. Actuators B 129, 35–39 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We highly appreciate financial support of Islamic Azad University of Qaemshahr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shokuhi Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, A.S., Chourani, A. Nickel Based Paddle-Wheel Metal–Organic Frameworks Towards Adsorption of O3 and SO2 Molecules: Quantum-Chemical Calculations. J Inorg Organomet Polym 27, 1826–1834 (2017). https://doi.org/10.1007/s10904-017-0648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0648-z

Keywords

Navigation