Skip to main content

Advertisement

Log in

Cobalt group transition metals (TM: Co, Rh, Ir) coordination of S-doped porphyrins (TM_S@PPR) as sensors for molecular SO2 gas adsorption: a DFT and QTAIM study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The intricate challenges posed by SO2 gas underscore the imperative for meticulous monitoring and detection due to its adverse effects on health, the environment, and equipment integrity. Hence, this research endeavors to delve deeply into the intricate realm of transition-metals functionalized sulfur-doped porphyrins (S@PPR) surfaces through a comprehensive computational study. The electronic properties revealed that upon adsorption, Ir_S@PPR surface reflects the least energy gap of 0.109 eV at the O-site of adsorptions, indicating an increase in electrical conductivity which is a better adsorption trait. Owing to the negative adsorption energy observed, the adsorption behavior is described as chemisorption, with the greatest adsorption energy of − 10.306 eV for Ir_S@PPR surface at the S-site of adsorption. Based on the mechanistic attributes, iridium-functionalized S@PPR surface is a promising detecting material towards the sensing of SO2 gas. This report will provide useful insight for experimental researchers in selecting and engineering materials to be used as detectors for SO2 gas pollutant.

Method

All theoretical investigations were carried out using density functional theory (DFT), calculated at PW6B95-D3/GenECP/Def2svp/LanL2DZ computational method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data are contained within the manuscript and electronic supporting information (ESI).

References

  1. Onifade M, Adebisi JA, Shivute AP, Genc B (2023) Challenges and applications of digital technology in the mineral industry. Resour Policy 85:103978

    Google Scholar 

  2. Vakili S, Schönborn A, Ölçer AI (2023) The road to zero emission shipbuilding industry: a systematic and transdisciplinary approach to modern multi-energy shipyards. Energy Conversion and Management: X 18:100365

    Google Scholar 

  3. Krishnan GG, Muraleedharan K (2024) Theoretical screening into urea-based receptor as a promising toxic gas sensor upon SO2, NH3 and H2S. Chemical Physics Impact 8:100436

    Google Scholar 

  4. Mahjour SK, Faroughi SA (2023) Risks and uncertainties in carbon capture, transport, and storage projects: a comprehensive review. Gas Sci Eng, p 205117

  5. Kadian S, Sethi SK, Manik G (2021) Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications. Mater Chem Front 5(2):627–658

    CAS  Google Scholar 

  6. Verma B, Kumar S, Sharma R, Borah SJ, Gupta A, Gupta MK, ... Kumar V (2023) Catalytic heterostructured materials: open scopes from renewable energy to climate neutral society for CO2 mitigation and conversion into fuels. Sustain Energy Fuels

  7. Wang J, Zeng W, Zhou Q (2022) Research status of gas sensing performance of MoTe2-based gas sensors: a mini review. Front Chem 10:950974

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu P, Huang M (2020) Transition metal doped arsenene: promising materials for gas sensing, catalysis and spintronics. Appl Surf Sci 506:144660

    CAS  Google Scholar 

  9. Singla M, Sharma D, Jaggi N (2021) Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: a DFT study. Int J Hydrogen Energy 46(29):16188–16201

    CAS  Google Scholar 

  10. Yang X, Deng Y, Yang H, Liao Y, Cheng X, Zou Y, Deng Y (2023) Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges. Adv Sc 10(1):2204810

    CAS  Google Scholar 

  11. Yan Y, Luo Y, Li Y, Zhang Y, Wu P, Tang J, ... Xiao S (2024) Transition metal (Au, Ag, Pt, Pd, Ni) doped MoS2 as gas sensing materials for C4F7N leakage detection: a comparative study. Surf Interfaces 44:103625

  12. Yang H, Li X, Wu Q, Su H, Ma C, Wang X, Zeng D (2023) Synergetic effect of highly active Ce sites and interlayer engineering induced by Ce doping of SnS2 to enhance gas sensing of NO2. Sens Actuat B: Chem 376:133033

    CAS  Google Scholar 

  13. Sudheep CV, Verma A, Jasrotia P, Hmar JJL, Gupta R, Verma AS, ... Kumar T (2023) Revolutionizing gas sensors: the role of composite materials with conducting polymers and transition metal oxides. Results Chem, p 101255. https://doi.org/10.1016/j.rechem.2023.101255

  14. Gkika DA, Ladomenou K, Bououdina M, Mitropoulos AC, Kyzas GZ (2023) Adsorption and photocatalytic applications of porphyrin-based materials for environmental separation processes: a review. Sci Total Environ, p 168293. https://doi.org/10.1016/j.scitotenv.2023.16829

  15. Wang TT, Xing BS, Guo CY, Hao JY, Wang Y, Huo LH, ... Xu YM (2023) Recent advances of emerging tin disulfide for room temperature gas sensing. Rare Met 42(12):3897–3913

  16. Chen J, Jia L, Cui X, Zeng W, Zhou Q (2023) Adsorption and gas-sensing properties of SF6 decomposition components (SO2, SOF2 and SO2F2) on Co or Cr modified GeSe monolayer: a DFT study. Mater Today Chem 28:101382

    CAS  Google Scholar 

  17. Liu K, Lin L, Wang Y (2023) Adsorption and sensing properties of ZrSe2 monolayer modified with transition metal for CO2, NO2 and SO2 gases: first-principles calculations. Mater Today Commun 36:106698

    CAS  Google Scholar 

  18. Pham KD, Hoang TD, Nguyen QT, Hoang DQ (2023) Fe-doped SnSe monolayer: a promising 2D material for reusable SO2 gas sensor with high sensitivity. J Alloy Compd 940:168919

    CAS  Google Scholar 

  19. Zhao Q, He J, Li S, Li S, Ning Q, Cui H (2023) DFT calculations of silver atom modified tungsten disulfide monolayer as promising sensing materials for small molecular toxic gases. Appl Sci 13(23):12559

    CAS  Google Scholar 

  20. Fakayode SO, Lisse C, Medawala W, Brady PN, Bwambok DK, Anum D, Grant C (2024) Fluorescent chemical sensors: applications in analytical, environmental, forensic, pharmaceutical, biological, and biomedical sample measurement, and clinical diagnosis. Appl Spect Rev 59(1):1–89

    Google Scholar 

  21. Napiórkowska E, Milcarz K, Szeleszczuk Ł (2023) Review of applications of density functional theory (DFT) quantum mechanical calculations to study the high-pressure polymorphs of organic crystalline materials. Int J Mol Sci 24(18):14155

    PubMed  PubMed Central  Google Scholar 

  22. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc.: Shawnee mission, KS, USA, pp 143–150

  23. Hameed S, Gul S, Ans M, Bhatti IA, Khera RA, Iqbal J (2023) Designing Y-shaped two-dimensional (2D) polymer-based donor materials with addition of end group acceptors for organic and perovskite solar cells. J Mol Model 29(5):152

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, M Ehara, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc., Wallingford CT (2016) GaussView 5.0. Wallingford, E.U.A.

  25. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111(42):10439–10452

    CAS  PubMed  Google Scholar 

  26. Steinmetz M, Grimme S (2013) Benchmark study of the performance of density functional theory for bond activations with (Ni, Pd)-based transition-metal catalysts. ChemistryOpen 2(3):115–124

  27. Khan MU, Hussain R, Yaqoob J, ur Rehman MF, Asghar MA, Kanmazalp SD, ... Akram MS (2023) Theoretical design and prediction of novel fluorene-based non-fullerene acceptors for environmentally friendly organic solar cell. Arab J Chem 16(1):104374

  28. Moberly JG, Bernards MT, Waynant KV (2018) Key features and updates for origin 2018. J Cheminform 10:1–2

  29. Tian Lu, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  30. Shahat A, Kubra KT, El-marghany A (2023) Equilibrium, thermodynamic and kinetic modeling of triclosan adsorption on mesoporous carbon nanosphere: optimization using Box-Behnken design. J Mol Liq, p 122166. https://doi.org/10.1016/j.molliq.2023.122166

  31. Qi X, Song W, Shi J (2017) Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials. PLoS ONE 12(3):e0173864

    PubMed  PubMed Central  Google Scholar 

  32. Ma X, Sun F, Qin L, Liu Y, Kang X, Wang L, Tang Z (2022) Electrochemical CO 2 reduction catalyzed by atomically precise alkynyl-protected Au 7 Ag 8, Ag 9 Cu 6, and Au 2 Ag 8 Cu 5 nanoclusters: probing the effect of multi-metal core on selectivity. Chem Sci 13(34):10149–10158

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rad AS, Zareyee D (2016) Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: a theoretical study. Vacuum 130:113–118

    ADS  Google Scholar 

  34. Serafin J, Dziejarski B (2023) Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous Mesoporous Mater 354:112513

    CAS  Google Scholar 

  35. Zhu Y, Ma Y, Wu D, Jiang G (2022) Preparation and gas sensing properties of ZnO/MXene composite nanomaterials. Sens Actuators, A 344:113740

    CAS  Google Scholar 

  36. Chen X, Long S, He L, Wang C, Chai F, Kong X, Tu Z (2022) Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition. Energ Conv Manag 269:116082

    CAS  Google Scholar 

  37. Ashiq M, Shehzad RA, Iqbal J, Ayub K (2024) Sensing applications of graphitic carbon nitride (g-C3N4) for sensing SO2 and SO3–a DFT study. Physica B 676:415661

    CAS  Google Scholar 

  38. Wen C, Liu T, Wang D, Wang Y, Chen H, Luo G, Xu M et al (2023) Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms. Progr Energ Combust Sci 99:101098

    Google Scholar 

  39. Thakur A, Kaya S, Kumar A (2023) Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys. Appl Sci 13(2):730

    CAS  Google Scholar 

  40. Aazam ES, Thomas R (2024) Synthesis, characterization, and electronic structure of bioactive vanillin based fluorescent Schiff bases. J Mol Liq 395:123820

    CAS  Google Scholar 

  41. Reeda VJ, Sakthivel S, Divya P, Javed S, Jothy VB (2024) Conformational stability, quantum computational (DFT), vibrational, electronic and non-covalent interactions (QTAIM, RDG and IGM) of antibacterial compound N-(1-naphthyl) ethylenediamine dihydrochloride. J Mol Struct 1298:137043

    CAS  Google Scholar 

  42. Lin H, Antsaklis PJ (2009) Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Autom Control 54(2):308–322

    MathSciNet  Google Scholar 

  43. Toriyama MY, Ganose AM, Dylla M, Anand S, Park J, Brod MK, Snyder, GJ, (2022) How to analyse a density of states. Mater Today Elect 1:100002

    Google Scholar 

  44. Rana MZ, Munshi MR, Al Masud M, Zahan MS (2023) Structural, electronic, optical and thermodynamic properties of AlAuO2 and AlAu094Fe006O2 compounds scrutinized by density functional theory (DFT). Heliyon 9(11). https://doi.org/10.1016/j.heliyon.2023.e21405

  45. Shahbazian S (2023) The MC-QTAIM: A framework for extending the “atoms in molecules” analysis beyond purely electronic systems. Advances in quantum chemical topology beyond QTAIM. Elsevier, pp 73–109

    Google Scholar 

  46. Sun P, Liu S, Zheng X, Hu G, Zhang Q, Liu X, Chen Y (2024) Challenges and opportunities of atomic-scales reactive sites in thriving electrochemical CO2 reduction reaction. Nano Today 55:102152

    CAS  Google Scholar 

  47. Eberhart ME, Wilson TR, Johnston NW, Alexandrova AN (2022) Geometry of charge density as a reporter on the role of the protein scaffold in enzymatic catalysis: Electrostatic preorganization and beyond. J Chem Theory Comput 19(3):694–704

    PubMed  Google Scholar 

  48. Pramila MJ, Dhas DA, Joe IH, Balachandran S, Vinitha G (2023) Structural insights, spectral, flourescence, Z-scan, CH… O/NH… O hydrogen bonding and AIM, RDG, ELF, LOL, FUKUI analysis, NLO activity of N-2 (Methoxy phenyl) acetamide. J Mol Struct 1272:134140

    CAS  Google Scholar 

  49. Santos CV Jr, Monteiro SA, Soares AS, Souto IC, Moura RT Jr (2023) Decoding chemical bonds: assessment of the basis set effect on overlap electron density descriptors and topological properties in comparison to QTAIM. J Phys Chem A 127(38):7997–8014

    PubMed  Google Scholar 

  50. Abdollahi-Moghadam M, Keypour H, Azadbakht R, Koolivand M (2023) An experimental and theoretical study of a new sensitive and selective Al3+ Schiff base fluorescent chemosensor bearing a homopiperazine moiety. J Mol Struct 1273:134289

    CAS  Google Scholar 

  51. Vincy CD, Tarika JD, Dexlin XD, Rathika A, Beaula TJ (2022) Exploring the antibacterial activity of 1, 2 diaminoethane hexanedionic acid by spectroscopic, electronic, ELF, LOL, RDG analysis and molecular docking studies using DFT method. J Mol Struct 1247:131388

    CAS  Google Scholar 

  52. Heidari N, Tarahhomi A, van der Lee A (2022) Structural and molecular packing study of three new amidophosphoric acid esters and assessment of their inhibiting activity against SARS-CoV-2 by molecular docking. ChemistrySelect 7(29):e202201504

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haque A, Alenezi KM, Khan MS, Wong WY, Raithby PR (2023) Non-covalent interactions (NCIs) in π-conjugated functional materials: advances and perspectives. Chem Soc Rev. https://doi.org/10.1039/D2CS00262K

  54. Karthikeyan S, Grishina M, Kandasamy S, Mangaiyarkarasi R, Ramamoorthi A, Chinnathambi S, ... John Kennedy L (2023) A review on medicinally important heterocyclic compounds and importance of biophysical approach of underlying the insight mechanism in biological environment. J Biomol Struct Dyn, pp 1–21. https://doi.org/10.1080/07391102.2023.2187640

  55. Adalikwu SA, Edet HO, Gber TE, Adeyinka AS, Louis H (2024) Boron and oxygen decorated Zn-doped aluminum/boron nitride and graphene/boron nitride heterostructures for the adsorption of phosgene gas: density functional theory outlook. Comput Theor Chem, p 114495. https://doi.org/10.1016/j.comptc.2024.114495

  56. Jiao S, Fu X, Huang H (2022) Descriptors for the evaluation of electrocatalytic reactions: d-Band theory and beyond. Adv Func Mater 32(4):2107651

    CAS  Google Scholar 

  57. Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z (2019) Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal 9(6):5692–5707

    CAS  Google Scholar 

  58. Bässler H, Kroh D, Schauer F, Nádaždy V, Köhler A (2021) Mapping the density of states distribution of organic semiconductors by employing energy resolved–electrochemical impedance spectroscopy. Adv Func Mater 31(9):2007738

    Google Scholar 

  59. Bueno PR, Davis JJ (2020) Charge transport and energy storage at the molecular scale: from nanoelectronics to electrochemical sensing. Chem Soc Rev 49(21):7505–7515

    CAS  PubMed  Google Scholar 

  60. Bein N, Kmet B, Rojac T, Golob AB, Malič B, Moxter J, Klein A (2022) Fermi energy, electrical conductivity, and the energy gap of NaNbO 3. Phys Rev Mater 6(8):084404

    CAS  Google Scholar 

  61. Ali M, Munir J, Khan MJI, Yousaf M, Younis MW, Saeed MA (2023) CO Adsorption on two-dimensional 2H-ZrO2 and its effect on the interfacial electronic properties: implications for sensing. Phys Scr 98(11):115801

    ADS  Google Scholar 

  62. Thomas S, Mayr F, Madam AK, Gagliardi A (2023) Machine learning and DFT investigation of CO, CO 2 and CH 4 adsorption on pristine and defective two-dimensional magnesene. Phys Chem Chem Phys 25(18):13170–13182

    CAS  PubMed  Google Scholar 

  63. Aasi A, Aasi E, Mehdi Aghaei S, Panchapakesan B (2022) Green phosphorene as a promising biosensor for detection of furan and p-Xylene as biomarkers of disease: a DFT study. Sensors 22(9):3178

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee CL, Hsi HC, Chang CM (2023) Linear correlation between electronegativity and adsorption energy of hydrated metal ions by carboxyl-functionalized single-walled carbon nanotubes. J Nanopart Res 25(4):59

    CAS  Google Scholar 

  65. Oyo-Ita I, Nsofor VC, Alshdoukhi IF, Abdullah HY, Sfina N, Asuquo BB, ... Louis H (2024) Adsorption, excitation analysis, and sensor properties of heteroatoms (S, P, Si) encapsulated gallium nitride nanotube for hexanol application: a computational approach. Mater Today Commun 38:107679

  66. Deng Y, Liu L, Li J, Gao L (2022) Sensors based on the carbon nanotube field-effect transistors for chemical and biological analyses. Biosensors 12(10):776

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centre for High-Performance Computing (CHPC) in South Africa for providing computational resources for this research project.

Author information

Authors and Affiliations

Authors

Contributions

Terkumbur E. Gber: writing, results extraction, analysis, and manuscript first draft. Monsurat Alarape Raimi: manuscript revision, review, and proofreading. Abdullah Ola Rajee: manuscript proofreading. Temple Okah Arikpo: writing, results extraction, and proofreading. Anthony M. S. Pembere: resources, review, and editing. Hitler Louis: project conceptualization, design, and supervision.

Corresponding author

Correspondence to Hitler Louis.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimi, M.A., Rajee, A.O., Gber, T.E. et al. Cobalt group transition metals (TM: Co, Rh, Ir) coordination of S-doped porphyrins (TM_S@PPR) as sensors for molecular SO2 gas adsorption: a DFT and QTAIM study. J Mol Model 30, 85 (2024). https://doi.org/10.1007/s00894-024-05879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05879-3

Keywords

Navigation