Skip to main content
Log in

Electronic and Magnetic Properties of Small Nickel Clusters and Their Interaction with CO Molecule

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A theoretical study was performed onto the small nickel clusters in order to evaluate their stability and electronic and magnetic properties using density functional theory (DFT) calculations at the BLYP/Def2-TZVP level of theory. The adsorption of CO molecule over the surface of these clusters has also been investigated. The results show that the Ni6 and Ni8 clusters are more stable than their neighbors. The magnetic moments of these clusters are in the range of 0.67 to 1.33 μB/atom. The results reveal also that the local magnetic moment of 3d orbitals in Nin clusters plays a crucial role in the magnetism of the Nin clusters. The interaction between the clusters and the CO molecule was found to be very strong, and the calculated adsorption energies range from – 30.8 to – 44.6 kcal mol−1. Moreover, the electronic properties of these clusters are greatly changed upon adsorption process. The change in energy gap (ΔEg) of the Ni clusters is considerable, reflecting that these clusters are very sensitive to the presence of the CO molecule onto their surface. Thus the Nin clusters can be employed as nanosensors for the detection of the CO molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo, H., Fang, Z., Li, H., Fernandez, D., Henkelman, G., Humphrey, S., Yu, G.: Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. ACS Nano. 13, 13225–13234 (2019)

    Google Scholar 

  2. Wang, Q., Liu, Y., Meng, Q., Zhu, Y., Xie, J., Luo, Y., Lyu, Y.: Nitrogen-rich hierarchical porous carbon supported Ag nanoparticles for efficient nitrophenol reduction. Microporous Mesoporous Mater. 290, 109672 (2019)

    Google Scholar 

  3. Gherib, H., Boudjahem, A., Medjahdi, G.: Effect of preparation of method and support on catalytic behavior of rhodium nanoparticles in styrene hydrogenation. Kinet. Catal. 61, 466–472 (2020)

    Google Scholar 

  4. Boudjahem, A., Mokrane, T., Redjel, A., Bettahar, M.: Silica supported nanopalladium prepared by hydrazine reduction. C. R. Chimie. 13, 1433–1439 (2010)

    Google Scholar 

  5. Boudjahem, A., Bettahar, M.: Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst. J. Mol. Catal. A. 426, 190–197 (2017)

    Google Scholar 

  6. Redjel, A., Boudjahem, A., Bettahar, M.: Effect of palladium precursor and preparation method on the catalytic performance of Pd/SiO2 catalysts for benzene hydrogenation. Part. Sci. Technol. 36, 710–715 (2018)

    Google Scholar 

  7. Murugesan, K., Alshammari, A., Sohail, M., Beller, M., Jagadeesh, R.: Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. J. Catal. 370, 372–377 (2019)

    Google Scholar 

  8. Rudakov, G.A., Tsiberkin, K.B., Ponomarev, R.S., Henner, V.K., Ziolkowska, D.A., Jasinski, J.B., Sumanasekera, G.: Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. J. Magn. Magn. Mater. 472, 34–39 (2019)

    ADS  Google Scholar 

  9. Koleva, M.E., Nedyalkov, N., Karashanova, D., Atanasova, G.B., Stepanov, A.L.: Modification of plasmon resonance properties of noble metal nanoparticles inside the glass matrices. Appl. Surf. Sci. 475, 974–981 (2019)

    ADS  Google Scholar 

  10. Mokrane, T., Boudjahem, A., Bettahar, M.: Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method. RSC Adv. 6, 59858–59864 (2016)

    ADS  Google Scholar 

  11. Boudjahem, A., Boulbazine, M., Chettibin, M.: Electronic and magnetic properties of Os-doped rhodium clusters: a theoretical study. J. Supercond. Nov. Magn. 31, 3119–3131 (2018)

    Google Scholar 

  12. Chettibi, M., Boudjahem, A., Bettahar, M.: Synthesis of Ni/SiO2 nanoparticles for catalytic benzene hydrogenation. Transit. Metal. Chem. 36, 163–169 (2011)

    Google Scholar 

  13. Xia, J., He, G., Zhang, L., Sun, X., Wang, X.: Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Appl. Catal. B. 180, 408–415 (2016)

    Google Scholar 

  14. Boudjahem, A., Monteverdi, S., Mercy, M., Bettahar, M.: Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J. Catal. 254, 124–154 (2004)

    Google Scholar 

  15. Gao, J., Jia, C., Zhang, M., Gu, F., Xu, G., Su, F.: Effect of nickel nanoparticles size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catal. Sci. Technol. 3, 2009–2015 (2013)

    Google Scholar 

  16. Boudjahem, A., Monteverdi, S., Mercy, M., Bettahar, M.: Nanonickel particles supported on silica. Morphology effects on their surface and hydrogenating properties. Catal. Lett. 97, 177–183 (2004)

    Google Scholar 

  17. Apsel, S.E., Emmert, J.W., Deng, J., Bloomfield, L.A.: Surface-enhanced magnetism in nickel clusters. Phys. Rev. Lett. 76, 1441–1444 (1996)

    ADS  Google Scholar 

  18. Song, W., Lu, W.C., Wang, C.Z.H., K.M.: Magnetic and electronic properties of the nickel clusters Nin (n ≤ 30). Comput. Theor. Chem. 978, 41–46 (2011)

    Google Scholar 

  19. Liu, B., Lusk, M.T., Ely, J.F.: Hydrogen dissociations on small nickel clusters. Mol. Simul. 35, 928–935 (2009)

    Google Scholar 

  20. Rodriguez-Kessler, P.L., Rodríguez-Dominguez, A.R.: Stability of Ni clusters and the adsorption of CH4: first-principles calculations. J. Phys. Chem. C. 119, 12378–12384 (2015)

    Google Scholar 

  21. Bandyopadhyay, D.: Chemisorptions effect of oxygen on the geometries, electronic and magnetic properties of small size Nin (n = 1-6) clusters. J. Mol. Model. 18, 737–749 (2012)

    Google Scholar 

  22. Ghatee, M., Pakdel, L.: Pyridine adsorption on small Nin clusters (n = 2,3,4): a study of geometry and electronic structure. Int. J. Quantum Chem. 113, 1549–1555 (2013)

    Google Scholar 

  23. Arifin, R., Shibuta, Y., Shimamura, K., Shimojo, F.: First principles calculation of CH4 decomposition on nickel (111) surface. Eur. Phys. J. B. 88, 303 (2015)

    ADS  Google Scholar 

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, G., Scalmani, V., Barone, B., Mennucci, G.A., Petersson, H., Nakatsuji, M., Caricato, J.R., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford (2013)

    Google Scholar 

  25. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 38, 3098–3100 (1988)

    ADS  Google Scholar 

  26. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)

    ADS  Google Scholar 

  27. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)

    Google Scholar 

  28. Boulbazine, M., Boudjahem, A., Chaguetmi, S., Karaman, A.: Stability and electronic properties of Rh-doped ruthenium clusters and their interaction with NH3 molecule. Mol. Phys. 118, e1643511 (2020)

    ADS  Google Scholar 

  29. Boulbazine, M., Boudjahem, A., Bettahar, M.: Stabilities, electronic and magnetic properties of Cu-doped nickel clusters: a DFT investigation. Mol. Phys. 115, 2495–2507 (2017)

    ADS  Google Scholar 

  30. Pinegar, J.C., Langenberg, J.D., Arrington, C., Spain, E., Morse, M.D.: Ni2 revisited: reassignment of the ground electronic state. J. Chem. Phys. 102, 666–374 (1995)

    ADS  Google Scholar 

  31. Ho, J., Polak, M.L., Ervin, K.M., Lineberger, W.C.: Photoelectron spectroscopy of nickel group dimers: Ni2, Pd2, and Pt2. J. Chem. Phys. 99, 8542–8551 (1993)

    ADS  Google Scholar 

  32. Moskovits, M., Hulse, J.E.: The ultraviolet-visible spectra of diatomic, triatomic, and higher nickel clusters. J. Chem. Phys. 66, 3988–3994 (1977)

    ADS  Google Scholar 

  33. Morse, M.D., Hansen, G.P., Langridge-Smith, P.R., Zheng, L.S., Geusic, M.E., Michalopoulos, D.L., Smalley, R.E.: Spectroscopic studies of the jet-cooled nickel dimer. J. Chern. Phys. 80, 5400 (1984)

    ADS  Google Scholar 

  34. Hush, N.S., Williams, M.L.: Carbon monoxide bond length, force constant and infrared intensity variations in strong electric fields: valence-shell calculations, with applications to properties of adsorbed and complexed CO. J. Mol. Spectrosc. 50, 349–368 (1974)

    ADS  Google Scholar 

  35. Kumar, G.R., Safvan, C.P., Rajgara, F.A., Mathur, D.: Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm−2. J. Phys. B Atomic Mol. Phys. 27, 2981–2991 (1994)

    ADS  Google Scholar 

  36. Dong, L., Yin, B., Zhang, L., Yin, Y., Zhang, Y.: Theoretical study of the effect of nickel and tin doping in copper clusters. Synth. Met. 162, 119–125 (2012)

    Google Scholar 

  37. Michelini, M.C., Pisdiez, R., Jubert, A.H.: Density functional study of small Nin clusters, with n = 2–6, 8, using the generalized gradient approximation. Int. J. Quantum Chem. 85, 22–33 (2001)

    Google Scholar 

  38. Fengyou, H., Yongfang, Z., Xinying, L., Fengli, L.: A density-functional study of nickel/aluminum microclusters. J. Mol. Struc. (THEOCHEM). 807, 153–158 (2007)

    Google Scholar 

  39. Bouderbala, W., Boudjahem, A.: First-principles calculations of small PdnAlm (n + m ≤ 6) clusters. Physica B. 454, 217–223 (2014)

    ADS  Google Scholar 

  40. Bouderbala, W., Boudjahem, A., Soltani, A.: Geometries, stabilities, electronic and magnetic properties of small PdnIr (n = 1–8) clusters from first-principles calculations. Mol. Phys. 112, 1789–1798 (2014)

    ADS  Google Scholar 

  41. Karaman, A., Boudjahem, A., Boulbazine, M., Gueid, A.: Stability and electronic properties of IrnV (n = 2-10) nanoclusters and their reactivity toward N2H4 molecule. Struct. Chem. 31, 203–214 (2020)

    Google Scholar 

  42. Boulbazine, M., Boudjahem, A.: Stability, electronic and magnetic properties of Mn-doped copper clusters: a meta-GGA functional investigation. J. Clust. Sci. 30, 31–44 (2019)

    Google Scholar 

  43. Soltani, A., Boudjahem, A., Bettahar, M.: Electronic and magnetic properties of small RhnCa (n = 1–9) clusters: a DFT study. Int. J. Quantum Chem. 116, 346–356 (2016)

    Google Scholar 

  44. Arvizu, G.L., Calaminici, P.: Assessment of density functional theory optimized basis sets for gradient corrected functional to transition metal systems: the case of small Nin (n ≤ 5) clusters. J. Chem. Phys. 126, 194102 (2007)

    ADS  Google Scholar 

  45. Venkataramanan, N.S.: Structures of small NixTiy (x + y ≤ 5) clusters: a DFT study. J. Mol. Struc. (THEOCHEM). 856, 9–15 (2008)

    Google Scholar 

  46. Reddy, B.V., Nayak, S.K., Khanna, S.N., Rao, B.K., Jena, P.: Physics of nickel clusters. Electronic structure and magnetic properties. J. Phys. Chem. A. 102, 1748–1759 (1998)

    Google Scholar 

  47. Grigoryan, V.G., Springborg, M.: Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Phys. Rev. B. 70, 205415 (2004)

    ADS  Google Scholar 

  48. Soltani, A., Boudjahem, A.: Stabilities, electronic and magnetic properties of small Rhn (n = 2-12) clusters: a DFT approach. Comput. Theor. Chem. 1047, 6–14 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Ghani Boudjahem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjahem, AG., Boulbazine, M. & Derdare, M. Electronic and Magnetic Properties of Small Nickel Clusters and Their Interaction with CO Molecule. J Supercond Nov Magn 34, 561–570 (2021). https://doi.org/10.1007/s10948-020-05720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05720-x

Keywords

Navigation