Skip to main content
Log in

A geometric branch and bound method for robust maximization of convex functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We investigate robust optimization problems defined for maximizing convex functions. While the problems arise in situations which are naturally modeled as minimization of concave functions, they also arise when a decision maker takes an optimistic approach to making decisions with convex functions. For finite uncertainty set, we develop a geometric branch-and-bound algorithmic approach to solve this problem. The geometric branch-and-bound algorithm performs sequential piecewise-linear approximations of the convex objective, and solves linear programs to determine lower and upper bounds at each node. Finite convergence of the algorithm to an \(\epsilon -\)optimal solution is proved. Numerical results are used to discuss the performance of the developed algorithm. The algorithm developed in this paper can be used as an oracle in the cutting surface method for solving robust optimization problems with compact ambiguity sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable NLPs-I. Theoretical advances, Comput. Chem. Eng. 22(9), 1137–1158 (1998)

  2. Adjiman, C..S., Dallwig, S., Floudas, C..A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

  3. Bansal, M., Huang, K., Mehrotra, S.: Decomposition algorithms for two-stage distributionally robust mixed binary programs. SIAM J. Optim. 28, 2360–2383 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bansal, M., Zhang, Y.: Two-Stage Stochastic and Distributionally Robust \(p\)-Order Conic Mixed Integer Programs (2018). http://www.optimization-online.org/DB_FILE/2018/05/6630.pdf

  5. Ben-Tal, A., EI Ghaoui, L., Nemirovski, A.: Robust Optimization, Princeton Series in Applied Mathematics, Princeton University Press (2009)

  6. Ben-Tal, A., EL Ghaoui, L., Nemirovski, A.: Robustness, Handbook of Semidefinite Programming. In: Saigal, R., Vandenberghe, L., Wolkowicz, H. (eds.), pp. 139–162. Kluwer Academic, Dordrecht (2000)

  7. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)

    Article  MathSciNet  Google Scholar 

  9. Benson, H.P.: Fractional programming with convex quadratic forms and functions. Eur. J. Oper. Res. 173, 351–369 (2006)

    Article  MathSciNet  Google Scholar 

  10. Benson, H.P.: A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem. Eur. J. Oper. Res. 182(2), 597–611 (2007)

    Article  MathSciNet  Google Scholar 

  11. Benson, H.P.: Solving sum of ratios fractional programs via concave minimization. J. Optim. Theory Appl. 135, 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  12. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15, 780–804 (2005)

    Article  MathSciNet  Google Scholar 

  13. Bonami, P., Lee, J., Leyffer, S., Wächter, A.: Novel bound contraction procedure for global optimization of bilinear minlp problems with applications to water management problems. Comput. Chem. Eng. 35, 446–455 (2011)

    Article  Google Scholar 

  14. Chen, C., Atamtürk, A., Oren, S.S.: A spatial branch-and-cut method for nonconvex qcqp with bounded complex variables. Math. Program. 165, 549–577 (2017)

    Article  MathSciNet  Google Scholar 

  15. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, Graduate Texts in Mathematics. Springer (2014)

  16. Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear minlp problems with applications to water management problems. Comput. Chem. Eng. 35, 446–455 (2011)

    Article  Google Scholar 

  17. Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications, 1 edn., Springer (2000)

  18. Gerard, D., Köppe, M., Louveaux, Q.: Guided dive for the spatial branch-and-bound. J. Glob. Optim. 68, 685–711 (2017)

    Article  MathSciNet  Google Scholar 

  19. Henrion, D., Lasserre, J.B.: Gloptipoly: global optimization over polynomials with MATLAB and SeDuMi. ACM Trans. Math. Softw. 29, 165–194 (2003)

    Article  MathSciNet  Google Scholar 

  20. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MathSciNet  Google Scholar 

  21. Jiao, H., Guo, Y., Shen, P.: Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 183, 717–728 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Kirst, P., Stein, O., Steuermann, P.: Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints. TOP 23, 591–616 (2015)

    Article  MathSciNet  Google Scholar 

  23. Leyffer, S.: Integrating sqp and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. 14, 295–309 (2001)

    Article  MathSciNet  Google Scholar 

  24. Li, Y., Shu, J., Song, M., Zhang, J., Zheng, H.: Multisourcing supply network design: two-stage chance-constrained model, tractable approximations, and computational results. INFORMS J. Comput. 29(2), 287–300 (2017)

    Article  MathSciNet  Google Scholar 

  25. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. Ser. B 103, 251–282 (2005)

    Article  MathSciNet  Google Scholar 

  26. Luo, F.Q.: A distributionally-Robust Service Center Location Problem with Decision Dependent Demand Induced from a Maximum Attraction Principle (2020). https://arxiv.org/pdf/2011.12514.pdf

  27. Luo, F.Q., Mehrotra, S.: A Decomposition Method for Distributionally-robust Two-stage Stochastic Mixed-integer Conic Programs (2019). https://arxiv.org/pdf/1911.08713.pdf

  28. Luo, F.Q., Mehrotra, S.: Robust Maximization of Piecewise-linear Convex Functions Using Mixed Binary Linear Programming Reformulation. Tech. report, Northwestern University, Department of Industrial Engineering and Management Science (2019)

  29. Pozo, C., Guillén-Gosálbez, G., Sorribas, A., Jiménez, L.: A spatial branch-and-bound framework for the global optimization of kinetic models of metabolic networks. Ind. Eng. Chem. Res. 50(9), 5225–5238 (2010)

    Article  Google Scholar 

  30. Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22(3), 681–701 (2012)

    Article  MathSciNet  Google Scholar 

  31. Rudin, W.: Principles of Mathematical Analysis, Example Product Manufacturer (2013)

  32. Ryoo, H.S., Sahinidis, N.V.: Global optimization of non convex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19, 551–566 (1995)

    Article  Google Scholar 

  33. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)

    Article  MathSciNet  Google Scholar 

  34. Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12, 1–36 (1998)

    Article  MathSciNet  Google Scholar 

  35. Shen, P.P., Yuan, G.X.: Global optimization for the sum of generalized polynomial fractional functions. Math. Methods Oper. Res. 65(3), 445–459 (2007)

    Article  MathSciNet  Google Scholar 

  36. Shen, Z.M., Coullard, C., Daskin, M.S.: A joint location-inventory model. Transp. Sci. 37(1), 40–55 (2003)

    Article  Google Scholar 

  37. Sherali, H.D.: Global optimization of nonconvex polynomial programming problems having rational exponents. J. Glob. Optim. 12(3), 267–283 (1998)

    Article  MathSciNet  Google Scholar 

  38. Sherali, H.D., Wang, H.: Global optimization of non convex factorable programming problems. Math. Program. Ser. A 89, 459–478 (2001)

    Article  Google Scholar 

  39. Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimization of nonconvex minlps. Comput. Chem. Eng. 23, 457–478 (1999)

    Article  Google Scholar 

  40. Smith, E.M.B., Pantelides, C.C.: Global optimization of general process models. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, pp. 355–386. Kluwer Academic, Boston (1996)

  41. Stein, O., Kirst, P., Steuermann, P.: An Enhanced Spatial Branch-and-Bound Method in Global Optimization with Nonconvex Constraints (2013). http://www.optimization-online.org/DB_FILE//2013/04/3810.pdf

  42. Tawarmalani, M.: Mixed Integer Nonlinear Programs: Theory, Algorithms and Applications. University of Illinois, Urbana-Champaign (2001) (Ph.D. thesis)

  43. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. Ser. A 99, 563–591 (2004)

    Article  MathSciNet  Google Scholar 

  44. Thakur, L.: Domain contraction in nonlinear programming: minimizing a quadratic concave objective over a polyhedron. Math. Oper. Res. 16, 390–407 (1991)

    Article  MathSciNet  Google Scholar 

  45. Trutman, P.: Polynomial Optimization Problem Solver (2017). https://github.com/PavelTrutman/polyopt

  46. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  47. Wang, S., Li, J., Mehrotra, S.: A Solution Approach to Distributionally Robust Chance-constrained Assignment Problems (2019). http://www.optimization-online.org/DB_FILE/2019/05/7207.pdf

  48. Wang, Y., Shen, P., Zhian, L.: A branch-and-bound algorithm to globally solve the sum of several linear ratios. Appl. Math. Comput. 168, 89–101 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Wang, Y.J., Liang, Z.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168, 722–737 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Wittek, P.: Algorithm 950: Ncpol2sdpa—sparse semidefinite programming relaxations for polynomial optimization problems of non-commuting variables. ACM Trans. Math. Softw. 41(21) (2003)

  51. Xie, W.: On distributionally robust chance constrained programs with wasserstein distance. Math. Program. 186(1), 115–155 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Xu, E.: A Python Connector to IPOPT (2014–2018). https://github.com/xuy/pyipopt

  53. Zamora, J.M., Grossmann, I.E.: Continuous global optimization of structured process systems models. Comput. Chem. Eng. 22(12), 1749–1770 (1998)

    Article  Google Scholar 

  54. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999)

    Article  MathSciNet  Google Scholar 

  55. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization in distributed sensor networks. ACM Trans. Embed. Comput. Syst. 3(1), 61–91 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The research of this paper is supported by the National Science Foundation Grant CMMI-1361942. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Mehrotra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Mehrotra, S. A geometric branch and bound method for robust maximization of convex functions. J Glob Optim 81, 835–859 (2021). https://doi.org/10.1007/s10898-021-01038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01038-7

Keywords

Navigation