Skip to main content
Log in

Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We discuss some difficulties in determining valid upper bounds in spatial branch-and-bound methods for global minimization in the presence of nonconvex constraints. In fact, two examples illustrate that standard techniques for the construction of upper bounds may fail in this setting. Instead, we propose to perturb infeasible iterates along Mangasarian–Fromovitz directions to feasible points whose objective function values serve as upper bounds. These directions may be calculated by the solution of a single linear optimization problem per iteration. Preliminary numerical results indicate that our enhanced algorithm solves optimization problems where a standard branch-and-bound method does not converge to the correct optimal value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, \(\alpha \text{ BB }\), for general twice-differentiable constrained NLPs-I. Theoretical advances. Comput Chem Eng 22:1137–1158

    Article  Google Scholar 

  • Adjiman CS, Androulakis IP, Floudas CA (1998) A global optimization method, \(\alpha \text{ BB }\), for general twice-differentiable constrained NLPs-II. Implementation and computational results. Comput Chem Eng 22:1159–1179

    Article  Google Scholar 

  • Androulakis IP, Maranas CD, Floudas CA (1995) \(\alpha \text{ BB }\): a global optimization method for general constrained nonconvex problems. J Glob Optim 7:337–363

    Article  Google Scholar 

  • Baumann E (1988) Optimal centered forms. BIT Numer Math 28:80–87

    Article  Google Scholar 

  • Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 24:597–634

    Article  Google Scholar 

  • Berthold T, Gleixner AM (2014) Undercover: a primal MINLP heuristic exploring a largest sub-MIP. Math Program 144:315–346

    Article  Google Scholar 

  • Berthold T, Heinz S, Pfetsch ME, Vigerske S (2011) Large neighborhood search beyond MIP. In: di Gaspar L (eds) Proceedings of the 9th metaheuristics international conference, pp 51–60

  • Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discret Optim 5:186–204

    Article  Google Scholar 

  • Cafieri S, Lee J, Liberti L (2010) On convex relaxations of quadrilinear terms. J Glob Optim 47:661–685

    Article  Google Scholar 

  • D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2012) A storm of feasibility pumps for nonconvex MINLP. Math Program 136:375–402

    Article  Google Scholar 

  • Domes F, Neumaier A (2015) Rigorous verification of feasibility. J Glob Optim 61:255–278

    Article  Google Scholar 

  • Dür M (2001) Dual bounding procedures lead to convergent branch-and-bound algorithms. Math Program 91:117125

    Google Scholar 

  • Dür M (2002) A class of problems where dual bounds beat underestimation bounds. J Glob Optim 22:4957

    Article  Google Scholar 

  • Floudas CA (2000) Deterministic global optimization. Theory, methods, and applications. Kluwer, Dordrecht

    Book  Google Scholar 

  • Geißler B, Martin A, Morsi A, Schewe L (2012) Using piecewise linear functions for solving MINLPs. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. Springer, Berlin, pp 287–314

    Chapter  Google Scholar 

  • Hock W, Schittkowski K (1981) Test examples for nonlinear programming codes. Springer, Berlin

    Book  Google Scholar 

  • Horst R, Tuy H (1996) Global optimization. Deterministic approaches. Springer, Berlin

    Book  Google Scholar 

  • Jongen HTh, Jonker P, Twilt F (1986) Critical sets in parametric optimization. Math Program 34:333–353

    Article  Google Scholar 

  • Kearfott RB (1998) On proving existence of feasible points in equality constrained optimization problems. Math Program 83:89–100

    Google Scholar 

  • Kearfott RB (2014) On rigorous upper bounds to a global optimum. J Glob Optim 59:459–476

    Article  Google Scholar 

  • Kelley Jr JE (1960) The cutting-plane method for solving convex programs. J Soc Ind Appl Math 8:703–712

    Article  Google Scholar 

  • Knüppel O (1994) PROFIL/BIAS-a fast interval library. Computing 53:277–287

    Article  Google Scholar 

  • Krawczyk R, Nickel K (1982) Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie. Computing 28:117–137

    Article  Google Scholar 

  • Liberti L, Pantelides CC (2003) Convex envelopes of monomials of odd degree. J Glob Optim 25:157–168

    Article  Google Scholar 

  • Makhorin A (2010) GNU linear programming kit. Department for Applied Informatics, Moscow Aviation Institute, Moscow

    Google Scholar 

  • McCormick GP (1983) Nonlinear programming: theory, algorithms and applications. Wiley, New York

    Google Scholar 

  • Neumaier A, Shcherbina O (2015) The COCONUT benchmark. http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html. Accessed 22 July 2014

  • Misener R, Floudas CA (2010) Piecewise-linear approximations of multidimensional functions. J Optim Theory Appl 145:120–147

    Article  Google Scholar 

  • Misener R, Floudas CA (2013) GloMIQO: global mixed-integer quadratic optimizer. J Glob Optim 57:3–30

    Article  Google Scholar 

  • Misener R, Floudas CA (2013) Mixed-integer nonlinear optimization problems: ANTIGONE 1.0 test suite. http://helios.princeton.edu/ANTIGONE/ANTIGONE_TestSuite.pdf. Accessed 22 July 2014

  • Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, Cambridge

    Google Scholar 

  • Ninin J, Messine F (2014) A metaheuristic methodology based on the limitation of the memory of interval branch and bound algorithms. Glob Optim 50:629–644

    Article  Google Scholar 

  • Pintér J (1988) Branch and bound algorithms for solving global optimization problems with Lipschitzian structure. Optimization 19:101–110

    Article  Google Scholar 

  • Paulavičius R, Žilinskas J (2014) Simplicial global optimization. Springer, Berlin

    Book  Google Scholar 

  • Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, Berlin

    Book  Google Scholar 

  • Sahinidis NV (1996) BARON: a general purpose global optimization software package. J Glob Optim 8:201–205

    Article  Google Scholar 

  • Smith EM, Pantelides CC (1997) Global optimization of nonconvex MINLPs. Comput Chem Eng 21:791–796

    Article  Google Scholar 

  • Smith EM, Pantelides CC (1999) A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput Chem Eng 23:457–478

    Article  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math Program 99:563–591

    Article  Google Scholar 

  • Tuy H (2005) Polynomial optimization: a robust approach. Pac J Optim 1:357–374

    Google Scholar 

  • Tuy H (2010) \({\cal D\cal ({\cal C}})\)-optimization and robust global optimization. J Glob Optim 47:485–501

Download references

Acknowledgments

We would like to thank the two anonymous referees for their precise and substantial remarks which helped to significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Stein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirst, P., Stein, O. & Steuermann, P. Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints. TOP 23, 591–616 (2015). https://doi.org/10.1007/s11750-015-0387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-015-0387-7

Keywords

Mathematics Subject Classification

Navigation