Skip to main content
Log in

A New Fluorene–Based Fluorescent Probe for Recognition of Hypochlorite Ions and its Applications

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Oxidative stress is a trigger for many diseases and occurs with the unstable hypochlorite (ClO), known as one of the reactive oxygen species (ROS) in organisms. Then, HOCI is acknowledged as an oxidizing species that eliminates a variety of environmental pollutants. Hence, the development of novel methodologies for the selective and precise identification of HOCl/ ClO is considered to be of utmost importance. In this study, the design, characterization, and applications of a fluorene-based fluorescent probe (FHBP) dependent on the ESIPT mechanism with a "turn-on" response for the sensitive/selective determination of ClO against other competing samples were reported. The experimental results indicated that the detection limit for ClOcould be quantitatively determined by the probe to be 8.2 × 10−7 M. The binding constant of the probe FHBP with ClO was computed as 9.75 × 103 M−1. In addition, the response time of FHBP was appointed to be 30 s, indicating a rapid reaction with ClO. It has also been demonstrated that this probe can be successfully used for the detection of ClO on filter papers, TLC sheets, cotton swabs, and real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Goswami S, Paul S, Manna A (2013) Highly reactive (< 1 min) ratiometric naked eye detection of hypochlorite with real application in tap water. Dalt Trans 42:10097–10101. https://doi.org/10.1039/c3dt51238j

    Article  CAS  Google Scholar 

  2. Rutala WA, Weber DJ (1997) Uses of inorganic hypochlorite (bleach) in health-care facilities. Clin Microbiol Rev 10:597–610. https://doi.org/10.1128/cmr.10.4.597-610.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuo L, Zhou T, Pannell BK et al (2015) Biological and physiological role of reactive oxygen species - the good, the bad and the ugly. Acta Physiol 214:329–348. https://doi.org/10.1111/apha.12515

    Article  CAS  Google Scholar 

  4. Rani V, Yadav UCS (eds) (2015) Reactive oxygen species and cellular defense system. Bhattacharya, Susinjan, In: Free Radicals in Human Health and Disease, pp 17–29

  5. Kwon N, Chen Y, Chen X et al (2022) Recent progress on small molecule-based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl–). Dye Pigment. https://doi.org/10.1016/j.dyepig.2022.110132

    Article  Google Scholar 

  6. Chen X, Wang F, Hyun JY et al (2016) Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 45:2976–3016. https://doi.org/10.1039/c6cs00192k

    Article  CAS  PubMed  Google Scholar 

  7. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350. https://doi.org/10.1042/0300-5127:0290345

    Article  CAS  PubMed  Google Scholar 

  8. Tong L, Chuang CC, Wu S, Zuo L (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25. https://doi.org/10.1016/j.canlet.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  9. Yu W, Zhao L (2021) Chemiluminescence detection of reactive oxygen species generation and potential environmental applications. TrAC - Trends Anal Chem. https://doi.org/10.1016/j.trac.2021.116197

    Article  Google Scholar 

  10. Quirce S, Barranco P (2010) Cleaning agents and asthma. J Investig Allergol Clin Immunol 20:542–550

    CAS  PubMed  Google Scholar 

  11. Lazaridis M, Colbeck I (eds) (2010) Environmental Levels (Chapter I). In: Human exposure to pollutants via dermal absorption and inhalation. Environ Pollut 1–39

  12. Galal-Gorchev H (1996) Chlorine in water disinfection. Pure Appl Chem 68:1731–1735. https://doi.org/10.1351/pac199668091731

    Article  CAS  Google Scholar 

  13. Erdemir S, Malkondu S, Kocyigit O, Alici O (2022) Antharacene-modified isophorone derivative with NIR-emission for hypochlorite detection by the oxidative decomposition reaction and its applications. Measurement 193:111007. https://doi.org/10.1016/j.measurement.2022.111007

    Article  Google Scholar 

  14. Michalski R, Mathews B (2007) Occurrence of chlorite, chlorate and bromate in disinfected swimming pool water. Pol J Environ Stud 16:237–241

    CAS  Google Scholar 

  15. Özel AD, Durmuş Z, Yilmaz I et al (2009) Electroreduction of some substituted hydrazones on platinum electrode in dimethylformamide. Acta Chim Slov 56:797–806

    Google Scholar 

  16. Çukurovali A, Yilmaz I, Özmen H (2001) Antimicrobial activity studies of the metal complexes derived from substituted cyclobutane substituted thiazole Schiff base ligands. Transit Met Chem 26:619–624. https://doi.org/10.1023/A:1012006404144

    Article  Google Scholar 

  17. Yilmaz I, Cukurovali A (2000) Synthesis and characterization of a new cyclobutane substituted Schiff base ligand and its cd (II), Co (II), ni (II) and zn (II) complexes. Pol J Chem 74:147–151

    Google Scholar 

  18. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783. https://doi.org/10.1038/nature07733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burns JM, Cooper WJ, Ferry JL et al (2012) Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci 74:683–734. https://doi.org/10.1007/s00027-012-0251-x

    Article  CAS  Google Scholar 

  20. Niu P, Zhu J, Wei L, Liu X (2022) Application of fluorescent probes in reactive Oxygen species Disease Model. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2022.2080495

    Article  PubMed  Google Scholar 

  21. Savran T,  Karuk Elmas S. N et al (2022) Design of multiple–target chemoprobe: naked–eye colorimetric recognition of ­Fe 3 + and off–on fluorogenic detection for ­Hg 2 + and its on–site applications. Res Chem Intermed 48:1003–1023

    Article  CAS  Google Scholar 

  22. Aksuner N, Henden E, Yilmaz I, Cukurovali A (2010) Development of a highly sensitive and selective optical chemical sensor for the determination of zinc based on fluorescence quenching of a novel schiff base ligand. Sens Lett 8:684–689. https://doi.org/10.1166/sl.2010.1330

    Article  CAS  Google Scholar 

  23. Sandhu N, Saproo S, Naidu S et al (2020) Turn-On’ sensing Behaviour of an in situ generated Fluorescein-based probe and its preferential selectivity of Sodium Hypochlorite over tert-butyl hydroperoxide in lung adenocarcinoma cells. ChemistrySelect 5:1264–1268. https://doi.org/10.1002/slct.201903843

    Article  CAS  Google Scholar 

  24. Shiraishi Y, Nakatani R, Takagi S et al (2020) A naphthalimide–sulfonylhydrazine conjugate as a fluorescent chemodosimeter for hypochlorite. Chemosensors 8:1–12. https://doi.org/10.3390/chemosensors8040123

    Article  CAS  Google Scholar 

  25. Shangguan M, Jiang X, Lu Z et al (2021) A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells. Talanta 234:303–307. https://doi.org/10.1016/j.talanta.2021.122634

    Article  CAS  Google Scholar 

  26. Shaya J, Corridon PR, Al-Omari B et al (2022) Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: a review. J Photochem Photobiol C Photochem Rev 52:100529. https://doi.org/10.1016/j.jphotochemrev.2022.100529

    Article  CAS  Google Scholar 

  27. Belfield KD, Bondar MV, Przhonska OV et al (2002) Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes. J Lumin 97:141–146. https://doi.org/10.1016/S0022-2313(02)00216-8

    Article  CAS  Google Scholar 

  28. Shao H, Chen X, Wang Z, Lu P (2007) Synthesis and fluorescence properties of carbazole and fluorene-based compounds. J Lumin 127:349–354. https://doi.org/10.1016/j.jlumin.2007.01.013

    Article  CAS  Google Scholar 

  29. Savran T, Nihan Karuk Elmas S, Akin Geyik G et al (2021) Turn-on fluorescence Chemosensor based probing of Cu2 + with excellent sensitivity: experimental study, DFT calculations and application in living cells and Natural Waters. ChemistrySelect 6:6286–6294. https://doi.org/10.1002/slct.202101060

    Article  CAS  Google Scholar 

  30. Zhang YM, Fang H, Zhu W et al (2020) Ratiometric fluorescent sensor based oxazolo-phenazine derivatives for detect hypochlorite via oxidation reaction and its application in environmental samples. Dye Pigment 172:107765. https://doi.org/10.1016/j.dyepig.2019.107765

    Article  CAS  Google Scholar 

  31. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Trucks AMJ, Frisch GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G (2014) VB Gaussian ~ 09 Revision D.01. 2014

  34. Dennington R, Keith TA (2009) JMM GaussView Version 5. 2009

  35. Yüksektepe C, Saraçoǧlu H, Çalişkan N et al (2010) Experimental and ab initio computational studies on dimethyl-(4-{4-{3- methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine. Bull Korean Chem Soc 31:3553–3560. https://doi.org/10.5012/bkcs.2010.31.12.3553

    Article  CAS  Google Scholar 

  36. Savran T, Karagöz A, Karuk Elmas ŞN et al (2020) Fluorescent sensing platform for low-cost detection of Cu2 + by coumarin derivative: DFT calculation and practical application in herbal and black tea samples. Turkish J Chem 44:1148–1163. https://doi.org/10.3906/KIM-2004-63

    Article  CAS  Google Scholar 

  37. Karuk Elmas SN, Karagoz A, Aydin D et al (2021) Fabrication and sensing properties of phenolphthalein based colorimetric and turn–on fluorogenic probe for CO32 – detection and its living–cell imaging application. Talanta. https://doi.org/10.1016/j.talanta.2021.122166

    Article  PubMed  Google Scholar 

  38. Sedgwick AC, Wu L, Han HH et al (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47:8842–8880. https://doi.org/10.1039/c8cs00185e

    Article  CAS  PubMed  Google Scholar 

  39. Singh G, Kaur A, Sharma M et al (2020) Reversible detection of hypochlorite using the deprotonation-protonation strategy: a search for new building blocks. Mater Adv 1:1347–1353. https://doi.org/10.1039/d0ma00300j

    Article  CAS  Google Scholar 

  40. Rivera-Figueroa AM, Ramazan KA, Finlayson-Pitts BJ (2004) Fluorescence, absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for quantitative analysis. J Chem Educ 81:242–245. https://doi.org/10.1021/ed081p242

    Article  CAS  Google Scholar 

  41. Naha S, Velmathi S (2020) ESIPT-AIE based sequential fluorescence ‘on-off’ marker for endogenous detection of hypochlorite and cobalt (II). Microchem J. https://doi.org/10.1016/j.microc.2019.104499

    Article  Google Scholar 

  42. Modrzyński JJ, Christensen JH, Brandt KK (2019) Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. Ecotoxicology 28:1136–1141. https://doi.org/10.1007/s10646-019-02107-0

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Zhou Y, Xu C et al (2018) A highly selective fluorescent probe for the detection of hypochlorous acid in tap water and living cells. Spectrochim Acta - Part Mol Biomol Spectrosc 203:415–420. https://doi.org/10.1016/j.saa.2018.06.012

    Article  CAS  Google Scholar 

  44. Li J, Gong A, Shi G, Chai C (2019) A novel ratiometric fluorescent probe for the selective determination of HClO based on the ESIPT mechanism and its application in real samples. RSC Adv 9:30943–30951. https://doi.org/10.1039/c9ra04569d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gangopadhyay A, Ali SS, Guria UN et al (2018) A ratiometric hypochlorite sensor guided by PET controlled ESIPT output with real time application in commercial bleach. New J Chem 42:15990–15996. https://doi.org/10.1039/C8NJ03369B

    Article  CAS  Google Scholar 

  46. Krishnaveni K, Murugesan S, Siva A (2019) Dual-mode recognition of biogenic amine tryptamine and fluoride ions by a naphthyl hydrazone platform: application in fluorescence imaging of HeLa cells and zebrafish embryos. New J Chem 43:9021–9031. https://doi.org/10.1039/c9nj01688k

    Article  CAS  Google Scholar 

  47. Han J, Li Y, Wang Y et al (2018) A water-soluble fluorescent probe for monitoring hypochlorite in water and in living cells. Sens Actuators B Chem 273:778–783. https://doi.org/10.1016/j.snb.2018.06.065

    Article  CAS  Google Scholar 

  48. Chen L, Park SJ, Wu D, Kim HM, Yoon J (2018) A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dyes and Pigments 158:526–532

    Article  CAS  Google Scholar 

  49. Lee SC, Kim C (2019) Naphthol-Naphthalimide based ‘turn-on’ fluorescent sensor for ClO – in aqueous media and test kit. Inorg Chem Commun 108:1–6. https://doi.org/10.1016/j.inoche.2019.107545

    Article  CAS  Google Scholar 

  50. Hwang SM, Yun D, Kim C (2019) An Imidazo[1,5-α]pyridine-Based fluorometric chemodosimeter for the highly selective detection of Hypochlorite in Aqueous Media. J Fluoresc 29:451–459. https://doi.org/10.1007/s10895-019-02355-7

    Article  CAS  PubMed  Google Scholar 

  51. Shiraishi Y, Yamada C, Hirai T (2019) A coumarin-dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Adv 9:28636–28641. https://doi.org/10.1039/c9ra05533a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kong XY, Shuang SM, Zhang YT et al (2022) Dicyanoisophorone-based fluorescent probe with large Stokes shift for ratiometric detection and imaging of exogenous/endogenous hypochlorite in cell and zebrafish. Talanta. https://doi.org/10.1016/j.talanta.2022.123293

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen Y, Zhu Z, Liu X et al (2022) Lysosome-targeting benzothiazole-based fluorescent probe for imaging viscosity and hypochlorite levels in living cells and zebrafish. Spectrochim Acta - Part Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2022.121141

    Article  Google Scholar 

  54. Wei H, Tan M, Lin Y et al (2023) A highly selective fluorescent probe for the detection of exogenous and endogenous hypochlorous acid/hypochlorite. Chem Pap 77:2317–2325. https://doi.org/10.1007/s11696-022-02618-x

    Article  CAS  Google Scholar 

  55. Wu H, Chen Y, Ling X et al (2021) A novel D-π-A molecule as ICT type fluorescent probe for endogenous hypochlorite imaging in living cells and zebrafishes. J Mol Liq 329:115465. https://doi.org/10.1016/j.molliq.2021.115465

    Article  CAS  Google Scholar 

  56. Han Z, Dong L, Sun F et al (2020) A novel fluorescent probe with extremely low background fluorescence for sensing hypochlorite in zebrafish. Anal Biochem 602:113795. https://doi.org/10.1016/j.ab.2020.113795

    Article  CAS  PubMed  Google Scholar 

  57. Hwang SM, Kim A, Kim C (2019) A simple hydrazine-based probe bearing anthracene moiety for the highly selective detection of hypochlorite. Inorg Chem Commun 101:1–5. https://doi.org/10.1016/j.inoche.2019.01.002

    Article  CAS  Google Scholar 

  58. Yadav R, Odera K, Rai A et al (2019) A stable and highly sensitive fluorescent probe for detection of hypochlorite ion in vitro and in living cells. Chem Lett 48:110–113. https://doi.org/10.1246/cl.180875

    Article  CAS  Google Scholar 

  59. Yu H, Wu Y, Hu Y et al (2017) Dual-functional fluorescent probe responds to hypochlorous acid and SO2 derivatives with different fluorescence signals. Talanta 165:625–631. https://doi.org/10.1016/j.talanta.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  60. Malkondu S, Erdemir S, Karakurt S (2020) Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: Biological sensing and environmental analysis. Dye Pigment 174:108019. https://doi.org/10.1016/j.dyepig.2019.108019

    Article  CAS  Google Scholar 

  61. Wang L, Qian Y (2019) A novel quinoline-BODIPY fluorescent probe for fast sensing biothiols via hydrogen bonds assisted-deprotonation mechanism and its application in cells and zebrafish imaging. J Photochem Photobiol Chem 372:122–130. https://doi.org/10.1016/j.jphotochem.2018.12.013

    Article  CAS  Google Scholar 

  62. Guo J, Ye S, Li H et al (2020) Novel fluorescence probe based on bright emitted carbon dots for ClO – detection in real water samples and living cells. Spectrochim Acta - Part Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2020.118592

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Karamanoglu Mehmetbey University.

Author information

Authors and Affiliations

Authors

Contributions

The author designed the research, performed the experimental studies, wrote the main manuscript, reviewed, and edited it.

Corresponding author

Correspondence to Tahir Savran.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2679 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savran, T. A New Fluorene–Based Fluorescent Probe for Recognition of Hypochlorite Ions and its Applications. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03702-z

Keywords

Navigation