Skip to main content
Log in

Inhibitory Potential of Carnosine and Aminoguanidine Towards Glycation and Fibrillation of Albumin: In-vitro and Simulation Studies

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carnosine is beta-alanyl histidine, a dipeptide, endogenously produced in our body by the carnosine synthase enzyme. It is an antioxidant, thus protecting from the deleterious effect of advanced glycation end products (AGEs). Similarly, aminoguanidine (AG) also prevents AGEs formation by scavenging free radicals such as reactive oxygen species (ROS)/reactive carbonyl species (RCS). This study used experimental and computational techniques to perform a comparative analysis of carnosine and AG and their inhibiting properties against glycated human serum albumin (HSA). Fructose-mediated glycation of albumin produced fluorescent structures, such as pentosidine and malondialdehyde. These AGEs were significantly reduced by carnosine and AG. At 20 mM, carnosine and AG quenches pentosidine fluorescence by 66% and 83%, respectively. A similar inhibitory effect was observed for malondialdehyde. Protein hydrophobicity and tryptophan fluorescence were restored in the presence of carnosine and AG. Aminoguanidine decreased fibrillation in HSA, while carnosine did not significantly affect aggregation/fibrillation. In addition, molecular docking study observed binding scores of -5.90 kcal/mol and -2.59 kcal/mol by HSA-aminoguanidine and HSA-carnosine complex, respectively. Aminoguanidine forms one conventional hydrogen bond with ARG A:10 and a salt bridge with ASP A:13, ASP A:259, ASP A:255, and ASP A:256 from the amine group. Similarly, carnosine forms only hydrogen bonds with GLU A:501 and GLN A:508 from the amine and hydroxy group. The root mean square deviation (RMSD) calculated from simulation studies was 1 nm upto 70 ns for the HSA-aminoguanidine complex and the spectrum of HSA-carnosine was significantly deviated and not stabilized. The superior inhibitory activity of aminoguanidine could be due to additional salt bridge bonding with albumin. Conclusively, aminoguanidine can be the better treatment choice for diabetes-associated neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

This manuscript's results/data/figures have not been published elsewhere, nor are they under consideration by another publisher. The data supporting this study's outcomes are available on request from the corresponding author.

References

  1. Pepper ED, Farrell MJ, Nord G, Finkel SE (2010) Antiglycation effects of carnosine and other compounds on the long-term survival of escherichia coli. Appl Environ Microbiol 76:7925–7930. https://doi.org/10.1128/AEM.01369-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sirangelo I, Iannuzzi C (2021) Understanding the role of protein glycation in the amyloid aggregation process. Int J Mol Sci 22. https://doi.org/10.3390/ijms22126609

  3. Ahmed A, Shamsi A, Khan MS et al (2018) Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. Int J Biol Macromol 113:269–276. https://doi.org/10.1016/j.ijbiomac.2018.02.137

    Article  CAS  PubMed  Google Scholar 

  4. Maciążek-Jurczyk M, Janas K, Pożycka J et al (2020) Human serum albumin aggregation/fibrillation and its abilities to drugs binding. Molecules 25. https://doi.org/10.3390/molecules25030618

  5. Rondeau P, Bourdon E (2011) The glycation of albumin: Structural and functional impacts. Biochimie 93:645–658. https://doi.org/10.1016/j.biochi.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Yeh WJ, Hsia SM, Lee WH, Wu CH (2017) Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal 25:84–92. https://doi.org/10.1016/j.jfda.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  7. Teufel M, Saudek V, Ledig J et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase *. 278:6521–6531. https://doi.org/10.1074/jbc.M209764200

  8. Caruso G (2022) Unveiling the hidden therapeutic potential of carnosine, a molecule with a multimodal mechanism of action: a position paper. Molecules 27. https://doi.org/10.3390/molecules27103303

  9. Hipkiss AR, Worthington VC, Himsworth DT, Herwig W (1998) Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim Biophys Acta 1380(1):46–54. https://doi.org/10.1016/s0304-4165(97)00123-2

    Article  CAS  PubMed  Google Scholar 

  10. Hipkiss AR, Gaunitz F (2014) Inhibition of tumour cell growth by carnosine: Some possible mechanisms. Amino Acids 46:327–337. https://doi.org/10.1007/s00726-013-1627-5

    Article  CAS  PubMed  Google Scholar 

  11. Seidler NW, Yeargans GS, Morgan TG (2004) Carnosine disaggregates glycated a -crystallin: an in vitro study 427:110–115. https://doi.org/10.1016/j.abb.2004.04.024

    Article  CAS  Google Scholar 

  12. Turner MD, Sale C, Garner AC, Hipkiss AR (2021) Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis. Biochim Biophys Acta - Mol Cell Res 1868:119117. https://doi.org/10.1016/j.bbamcr.2021.119117

    Article  CAS  PubMed  Google Scholar 

  13. Hipkiss AR (2017) Depression, diabetes and dementia: Formaldehyde may be a common causal agent; could carnosine, a pluripotent peptide, be protective? Aging Dis 8:128–130. https://doi.org/10.14336/AD.2017.0120

  14. Aloisi A, Barca A, Romano A et al (2013) Anti-Aggregating effect of the naturally occurring dipeptide carnosine on aβ1–42 fibril formation. PLoS One 8. https://doi.org/10.1371/journal.pone.0068159

  15. Ghodsi R, Kheirouri S (2018) Carnosine and advanced glycation end products: a systematic review. Amino Acids 50:1177–1186. https://doi.org/10.1007/s00726-018-2592-9

    Article  CAS  PubMed  Google Scholar 

  16. Yamagishi SI (2013) Advanced Glycation End-Products. Elsevier Inc

  17. Thornalley PJ (2003) Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 419:31–40. https://doi.org/10.1016/j.abb.2003.08.013

    Article  CAS  PubMed  Google Scholar 

  18. Thornalley PJ, Yurek-George A, Argirov OK (2000) Kinetics and mechanism of the reaction of aminoguanidine with the α-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem Pharmacol 60:55–65. https://doi.org/10.1016/S0006-2952(00)00287-2

    Article  CAS  PubMed  Google Scholar 

  19. Hipkiss AR (2009) Carnosine, diabetes and Alzheimer’s disease. Expert Rev Neurother 9:583–585. https://doi.org/10.1586/ern.09.32

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad S, Khan MS, Alouffi S et al (2021) Gold Nanoparticle-bioconjugated aminoguanidine inhibits glycation reaction: an in vivo study in a diabetic animal model. Biomed Res Int 2021. https://doi.org/10.1155/2021/5591851

  21. Kador PF (2010) Diabetes-associated cataracts. Elsevier Inc, Second Edi

    Book  Google Scholar 

  22. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 114:597–605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854

    Article  CAS  PubMed  Google Scholar 

  23. Mou L, Hu P, Cao X et al (2022) Comparison of bovine serum albumin glycation by ribose and fructose in vitro and in vivo. Biochim Biophys Acta - Mol Basis Dis 1868:166283. https://doi.org/10.1016/j.bbadis.2021.166283

    Article  CAS  PubMed  Google Scholar 

  24. Shamsi A, Shahwan M, Husain FM, Khan MS (2019) Characterization of methylglyoxal induced advanced glycation end products and aggregates of human transferrin: Biophysical and microscopic insight. Int J Biol Macromol 138:718–724. https://doi.org/10.1016/j.ijbiomac.2019.07.140

    Article  CAS  PubMed  Google Scholar 

  25. Rafi Z, Alouffi S, Khan MS, Ahmad S (2020) 2’-Deoxyribose mediated glycation leads to alterations in BSA structure via generation of carbonyl species. Curr Protein Pept Sci 21:924–935. https://doi.org/10.2174/1389203721666200213104446

    Article  CAS  PubMed  Google Scholar 

  26. Khan TA, Amani S, Naeem A (2012) Glycation promotes the formation of genotoxic aggregates in glucose oxidase. Amino Acids 43:1311–1322. https://doi.org/10.1007/s00726-011-1204-8

    Article  CAS  PubMed  Google Scholar 

  27. Khan MS, Althobaiti MS, Almutairi GS, Alokail MS, Altwaijry N, Alenad AM, Al-Bagmi MS, Alafaleq NO (2022) Elucidating the binding and inhibitory potential of p-coumaric acid against amyloid fibrillation and their cytotoxicity: biophysical and docking analysis. Biophys Chem 291:106823. https://doi.org/10.1016/j.bpc.2022.106823

    Article  CAS  PubMed  Google Scholar 

  28. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sugio S, Mochizuki S, Noda M, Kashima A (1998) 1Ao6 crystal structure of human serum albumin. Protein Databank 5:827–835

    Google Scholar 

  30. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  31. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee J, Hitzenberger M, Rieger M et al (2020) CHARMM-GUI supports the Amber force fields. J Chem Phys 153:35103. https://doi.org/10.1063/5.0012280

    Article  CAS  Google Scholar 

  33. Lee J, Cheng X, Swails JM et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413. https://doi.org/10.1021/acs.jctc.5b00935

    Article  CAS  PubMed  Google Scholar 

  34. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB et al (2016) G16_C01. Gaussian 16, Revision C.01, Gaussian, Inc., Wallin

  36. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  37. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  38. Mitra D, Fatakdawala H, Nguyen-Truong M et al (2017) Detection of pentosidine cross-links in cell-secreted decellularized matrices using time resolved fluorescence spectroscopy. ACS Biomater Sci Eng 3:1944–1954. https://doi.org/10.1021/acsbiomaterials.6b00029

    Article  CAS  PubMed  Google Scholar 

  39. Brownlee M, Vlassara H, Kooney A, Ulrich P CA (1986) Wall protein cross-linking. Science (80-) 232:1629–1623

  40. Edelstein D, Brownlee M (1992) Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41:26–29. https://doi.org/10.2337/diabetes.41.1.26

    Article  CAS  PubMed  Google Scholar 

  41. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. https://doi.org/10.1016/j.numecd.2005.05.003

    Article  PubMed  Google Scholar 

  42. Torun AN, Kulaksizoglu S, Kulaksizoglu M et al (2009) Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin Endocrinol (Oxf) 70:469–474. https://doi.org/10.1111/j.1365-2265.2008.03348.x

    Article  CAS  PubMed  Google Scholar 

  43. Das A, Basak P, Pramanik A et al (2020) Ribosylation induced structural changes in Bovine Serum Albumin: understanding high dietary sugar induced protein aggregation and amyloid formation. Heliyon 6:e05053. https://doi.org/10.1016/j.heliyon.2020.e05053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sell DR, Nelson JF, Monnier VM (2001) Effect of chronic Aminoguanidine treatment on age-related glycation, glycoxidation, and collagen cross-linking in the fischer 344 rat. Journals Gerontol - Ser A Biol Sci Med Sci 56:B405–B411. https://doi.org/10.1093/gerona/56.9.B405

    Article  CAS  Google Scholar 

  45. Ooi H, Nasu R, Furukawa A et al (2022) Pyridoxamine and Aminoguanidine Attenuate the Abnormal Aggregation of β-Tubulin and Suppression of Neurite Outgrowth by Glyceraldehyde-Derived Toxic Advanced Glycation End-Products. Front Pharmacol 13:1–10. https://doi.org/10.3389/fphar.2022.921611

    Article  CAS  Google Scholar 

  46. Goswami N, Makhal A, Pal SK (2010) Toward an alternative intrinsic probe for spectroscopic characterization of a protein. 15236–15243

  47. Kamei N, Tamiwa H, Miyata M et al (2018) Hydrophobic amino acid tryptophan shows promise as a potential absorption enhancer for oral delivery of biopharmaceuticals. Pharmaceutics 10. https://doi.org/10.3390/pharmaceutics10040182

  48. Ory JJ, Banaszak LJ (1999) Studies of the ligand binding reaction of adipocyte lipid binding protein using the fluorescent probe 1,8-anilinonaphthalene-8-sulfonate. Biophys J 77:1107–1116. https://doi.org/10.1016/S0006-3495(99)76961-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784. https://doi.org/10.1021/cr0404390

    Article  CAS  PubMed  Google Scholar 

  50. Collini M, D’Alfonso L, Molinari H et al (2003) Competitive binding of fatty acids and the fluorescent probe 1–8-anilinonaphthalene sulfonate to bovine β-lactoglobulin. Protein Sci 12:1596–1603. https://doi.org/10.1110/ps.0304403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta - Proteins Proteomics 1804:1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  Google Scholar 

  52. Wolfe LS, Calabrese MF, Nath A et al (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci U S A 107:16863–16868. https://doi.org/10.1073/pnas.1002867107

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jelesarov I, Karshikoff A (2009) Defining the role of salt bridges in protein stability. Methods Mol Biol 490:227–60. https://doi.org/10.1007/978-1-59745-367-7_10

    Article  CAS  PubMed  Google Scholar 

  54. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties BT - New Concepts II. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 95–170

    Google Scholar 

  55. Demircioʇlu Z, Kaştaş ÇA, Büyükgüngör O (2015) Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol. J Mol Struct 1091:183–195. https://doi.org/10.1016/j.molstruc.2015.02.076

    Article  CAS  Google Scholar 

  56. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856. https://doi.org/10.1021/ja00005a073

    Article  CAS  Google Scholar 

  57. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  58. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. https://doi.org/10.1146/annurev.pc.46.100195.003413

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

MSK acknowledges the generous support from the Research Supporting Project (RSP2023R352) by the King Saud University, Riyadh, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.S.K, M.R.K, R.M, S.K designed and performed experiment. K.A, H.O, M.A analysis of data and result. M.A.O and N.A provided facility and support for chemicals and lab.

Corresponding author

Correspondence to Mohd Shahnawaz Khan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

The authors declare that the research did not involve human or animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 866 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Khan, M.S., Manoharan, R. et al. Inhibitory Potential of Carnosine and Aminoguanidine Towards Glycation and Fibrillation of Albumin: In-vitro and Simulation Studies. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03485-9

Keywords

Navigation