Skip to main content

Advertisement

Log in

Glycation promotes the formation of genotoxic aggregates in glucose oxidase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study investigates the effect of pentose sugars (ribose and arabinose) on the structural and chemical modifications in glucose oxidase (GOD) as well as genotoxic potential of this modified form. An intermediate state of GOD was observed on day 12 of incubation having CD minima peaks at 222 and 208 nm, characteristic of α-helix and a few tertiary contacts with altered tryptophan environment and high ANS binding. All these features indicate the existence of molten globule state of the GOD with ribose and arabinose on day 12. GOD on day 15 of incubation forms β structures as revealed by CD and FTIR which may be due to its aggregation. Furthermore, GOD on day 15 showed a remarkable increase in Thioflavin T fluorescence at 485 nm. Comet assay of lymphocytes and plasmid nicking assay in presence of glycated GOD show DNA damage which confirmed the genotoxicity of advance glycated end products. Hence, our study suggests that glycated GOD results in the formation of aggregates and the advanced glycated end products, which are genotoxic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amani S, Naeem A (2011) Acotonitrile can promote formation of different structural intermediate states on aggregation pathway of immunoglobin G from human and bovine. Int J Biol Macromol 49(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Boyanova M, Huppertz B (2009) Cytotoxic effect of advanced glycation end products. Biotechnol Biotechnol Eq 23(1):1072–1078

    CAS  Google Scholar 

  • Brouwers O, Niessen PM, Ferreira I, Miyata T, Scheffer PG, Teerlink T, Schrauwen P, Brownlee M, Stehouwer CD, Schalkwijk CG (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem 286(2):1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces α-Synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS One 5(2):e9052

    Google Scholar 

  • Chiti F, Webstar P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594

    Article  PubMed  CAS  Google Scholar 

  • Corzo-Martinez M, Soria AC, Belloque J, Villamiel M, Moreno FJ (2010) Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. Inter Dairy J 20(11):742–752

    Article  CAS  Google Scholar 

  • Ewbank JJ, Creighton TE (1991) The molten globule protein conformation probed by disulphide bonds. Nature 350:518–520

    Article  PubMed  CAS  Google Scholar 

  • Grassino AN, Milardovic S, Grabaric Z, Grabaric BS (2011) Amperometric assessment of glucose electrode behaviour in mixed solvents and determination of glucose in dairy products. Food Chem 125(4):1335–1339

    Article  CAS  Google Scholar 

  • Hand M, Filova E, Kubala M, Lansky Z, Kolacna L, Vorlicek J, Trc T, Amler E (2007) Fluorescent advanced glycation end products in the detection of factual stages of cartilage degeneration. Physiol Res 56:235–242

    Google Scholar 

  • Haouz A, Twist C, Zentz C, Kersabiec AM, Pin S, Alpert B (1998) Forster energy transfer from tryptophan to flavin in glucose oxidase. Chem Phys Lett 294:197–203

    Article  CAS  Google Scholar 

  • Haynes R, Osuga DT, Feeney RE (1967) Modification of amino groups in inhibitors of proteolytic enzymes. Biochemistry 6:541–547

    Article  PubMed  CAS  Google Scholar 

  • Horowitz PM, Criscimagna NL (1990) Stable intermediates can be trapped during the reversible refolding of urea denatured rhodanese. J Biol Chem 265:2576–2583

    PubMed  CAS  Google Scholar 

  • Huanfen Y, Angela JS, Melissa C, Ilkka L, Babak AP (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosen Bioelect 26(7):3290–3296

    Article  Google Scholar 

  • Husain E, Naseem I (2008) Riboflavin-mediated cellular photoinhibition of cisplatin-436 induced oxidative DNA breakage in mice epidermal keratinocytes. Photodermatol Photoimmunol Photomed 24:301–307

    Article  PubMed  CAS  Google Scholar 

  • Jha NS, Kishore N (2011) Thermodynamic studies on the interaction of folic acid with bovine serum albumin. J Chem Thermody 43(5):814–821

    Article  CAS  Google Scholar 

  • Kriechbaum M, Heilmann HJ, Wientjes FJ, Hahn M, Jany KD, Gassen HG, Sharif F, Alaeddinoglu G (1989) Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Lett 255:63–66

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Simpson G, Ortwerth B (1999) Alzheimer’s disease–synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. Biochim Biophys Acta 1453:141–151

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenberg NJ, Randall AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Matulis D, Baumann CG, Bloomfield UA, Lovrien UA (1999) 1-Anilino-8-napthelene sulfonate as a protein conformational tightening agent. Biopolymers 49(6):451–458

    Article  PubMed  CAS  Google Scholar 

  • Mossavarali S, Hosseinkhani S, Ranjbar B, Miroliaei M (2006) Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. Int J Biol Macromol 39:192–196

    Article  PubMed  CAS  Google Scholar 

  • Mullokandov EA, Franklin WA, Brownlee M (1994) DNA damage by the glycation products of glyceraldehyde-3-phosphate and lysine. Diabetologia 37:145–149

    Article  PubMed  CAS  Google Scholar 

  • Munch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P (1998) Alzheimer’s disease–synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461

    Article  PubMed  CAS  Google Scholar 

  • Myung-Chan K, Jung-Hwan O, Bong-Yeon K, Sueng-Mock C, Da-Sun L, Min-Hee N, Seon-Bong K, Yang-Bong L (2010) Development of grilled-type shrimp flavor by Maillard reaction and sensory evaluation. J Food Sci Nut 15(4):309–315

    Article  Google Scholar 

  • Nagy A, Darmochwal KM, Stanislaw K, Mierzejewska D, Kostyra H, Gelencser E (2009) Influence of glycation and pepsin hydrolysis on immunoreactivity of albumin/globulin fraction of herbicide resistant wheat line. Czech J Food Sci 27:320–329

    CAS  Google Scholar 

  • Ptitsyn OB (1992) Protein folding. In: Creighton TE (ed) The molten globule state, WH Freeman and Co, New York, pp 243–300

  • Sanghera N, Wall M, Venien-Bryan C, Pinheiro TJ (2008) Globular and pre-fibrillar prion aggregates are toxic to neuronal cells and perturb their electrophysiology. Biochim Biophys Acta 1784(6):873–881

    Article  PubMed  CAS  Google Scholar 

  • Schleicher ED, Bierhaus A, Haring HU (2001) Chemistry and pathobiology of advanced glycation end products. Contrib Nephrol 131:1–9

    Article  PubMed  CAS  Google Scholar 

  • Singh N, McCoy P, Tice MT, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  • Stopper HR, Schinzel K, Sebekova Heidland A (2003) Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett 190:151–156

    Article  PubMed  CAS  Google Scholar 

  • Sundd M, Kundu S, Jagannadham MV (2000) Alcohol-induced conformational transitions in ervatamin C. An alpha-helix to beta-sheet switchover. J Protein Chem 19:169–176

    Article  PubMed  CAS  Google Scholar 

  • Susi H, Byler DM (1986) Resolution enhanced fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  PubMed  CAS  Google Scholar 

  • Susi H, Timasheff SN, Steven L (1967) Infrared spectra and protein conformations in aqueous solutions. The amide I band in H2O and D2O solution. J Biol Chem 242:5460–5466

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems role in aging and disease. Drug Metabol Drug Interact 23:125–150

    Article  PubMed  CAS  Google Scholar 

  • Usha R, Jaimohan SM, Rajaram A, Mandal AB (2010) Aggregation and self assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An in vitro study. Inter J Biol Macro 47(3):402–409

    Article  CAS  Google Scholar 

  • Worthington CC (1988) The Worthington Manual. Worthington Biochemical Co, Freehold, NJ

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Sakata N, Meng J, Sakamoto M, Noma A, Maeda I, Okamoto K, Takebayashi S (2002) Possible involvement of increased glucooxidation and lipid peroxidation of elastin in atherogenesis in haemodialysis patients. Nephrol Dial Transplant 17:630–636

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Harding JJ (1997) Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J 328:599–605

    PubMed  CAS  Google Scholar 

  • Zolda G, Zubrik A, Musatov A, Stupa M, Sedla E (2004) Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure. J Biol Chem 279:47601–47609

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful for the facilities obtained at AMU Aligarh. Financial support from the Department of Science and Technology, New Delhi in the form of project (SR/FT/LS-087/2007) and CSIR in the form of project No. 37(1365)/09/EMR- II is gratefully acknowledged.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabgeena Naeem.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, T.A., Amani, S. & Naeem, A. Glycation promotes the formation of genotoxic aggregates in glucose oxidase. Amino Acids 43, 1311–1322 (2012). https://doi.org/10.1007/s00726-011-1204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1204-8

Keywords

Navigation