Skip to main content
Log in

Nitrogen and Chlorine Co-doped Carbon Dots as a Highly Selective and Sensitive Fluorescent Probe for Sensing of PH, Tetracycline Detection and Cell Imaging

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon dots have been widely focused on the field of sensing and detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and chlorine co-doped carbon dots (N,Cl-CDs) are obtained by one-pot hydrothermal method using o-phenylenediamine and neutral red. Based on the inner filter effect, the prepared N,Cl-CDs can be innovatively developed as an effective “signal-off” multifunctional sensing platform for sensitive determination of tetracycline. The proposed sensor was utilized to realize the determination of tetracycline in Rirver water samples/milk samples (λex = 390 nm, λem = 606 nm) with satisfactory recoveries and relative standard deviations. The linear range of are 0.05 to 45 μM and 45 to135 μM, and detection limit is 3.9 nM (3σ/m). Meanwhile, the luminescent intensity of N,Cl-CDs was reduced gradually when pH changed continuously from 12 to 2, showing a pH-responsive fluorescence property with two linear ranges of pH 3–7 and pH 7–10. In addition, due to the characteristics of low toxicity and excellent biocompatibility, the N, Cl-CDs were also used in the imaging of oocystis cells, which is hopeful to realize the detection of tetracycline in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Bidell MR, Pai MP, Lodise TP (2020) Use of oral tetracyclines in the treatment of adult patients with community-acquired bacterial pneumonia: a literature review on the often-overlooked antibiotic class. Antibiotics 9(12):905. https://doi.org/10.3390/antibiotics9120905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conde-Cid M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Fernández-Calviño D, Arias-Estévez M (2020) Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes 8(11):1479. https://doi.org/10.3390/pr8111479

    Article  CAS  Google Scholar 

  3. Platt BN, Jacobs CA, Conley CEW, Stone AV (2021) Tetracycline use in treating osteoarthritis: a systematic review. Inflamm Res 70(3):249–259. https://doi.org/10.1007/s00011-021-01435-4

    Article  CAS  PubMed  Google Scholar 

  4. Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R (2021) Interaction between tetracycline and microorganisms during wastewater treatment: A review. Sci Total Environ 757:143981. https://doi.org/10.1016/j.scitotenv.2020.143981

    Article  CAS  PubMed  Google Scholar 

  5. Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS (2020) Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 103(2):1051–1071. https://doi.org/10.3168/jds.2019-16778

    Article  CAS  PubMed  Google Scholar 

  6. Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil - A critical review. Sci Total Environ 538:750–767. https://doi.org/10.1016/j.scitotenv.2015.08.108

    Article  CAS  PubMed  Google Scholar 

  7. Zhao W, Wang B, Yu G (2018) Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Environ Sci Pollut Res 25(22):21467–21482. https://doi.org/10.1007/s11356-018-2507-z

    Article  CAS  Google Scholar 

  8. Flórez AB, Vázquez L, Mayo B (2017) A functional metagenomic analysis of tetracycline resistance in cheese bacteria. Front Microbiol 8:907. https://doi.org/10.3389/fmicb.2017.00907

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grossman TH (2016) Tetracycline antibiotics and resistance. Cold Spring Harbor Perspect Med 6(4):a025387. https://doi.org/10.1101/cshperspect.a025387

    Article  CAS  Google Scholar 

  10. Roberts MC, Schwarz S (2016) Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual 45(2):576–592. https://doi.org/10.2134/jeq2015.04.0207

    Article  CAS  PubMed  Google Scholar 

  11. Shaskolskiy B, Dementieva E, Leinsoo A, Petrova N, Chestkov A, Kubanov A, Deryabin D, Gryadunov D (2018) Tetracycline resistance of Neisseria gonorrhoeae in Russia, 2015–2017. Infect Genet Evol 63:236–242. https://doi.org/10.1016/j.meegid.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Yan H, Zhang K, Shentu J, Shen D, Li N, Wang M (2018) Changes to tetracyclines and tetracycline resistance genes in arable soils after single and multiple applications of manure containing tetracyclines. Environ Sci Pollut Res 25(6):5572–5581. https://doi.org/10.1007/s11356-017-0853-x

    Article  CAS  Google Scholar 

  13. García-Fernández J, Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2014) A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle. J Agric Food Chem 62(7):1733–1740. https://doi.org/10.1021/jf500118x

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y (2018) Recent advances in sensors for tetracycline antibiotics and their applications. Trends Anal Chem 109:260–274. https://doi.org/10.1016/j.trac.2018.10.011

    Article  CAS  Google Scholar 

  15. Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM (2018) Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Tech 73:45–57. https://doi.org/10.1016/j.tifs.2018.01.009

    Article  CAS  Google Scholar 

  16. Penn CJ, Camberato JJ (2019) A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6):120. https://doi.org/10.3390/agriculture9060120

    Article  Google Scholar 

  17. Salvo P, Dini V, Kirchhain A, Janowska A, Oranges T, Chiricozzi A, Lomonaco T, Di Francesco F, Romanelli M (2017) Sensors and biosensors for C-reactive protein, temperature and ph, and their applications for monitoring wound healing: a review. Sensors 17(12):2952. https://doi.org/10.3390/s17122952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arcari T, Feger M-L, Guerreiro DN, Wu J, O’Byrne CP (2020) Comparative review of the responses of listeria monocytogenes and escherichia coli to low pH stress. Genes 11(11):1330. https://doi.org/10.3390/genes11111330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yue Y, Huo F, Lee S, Yin C, Yoon J (2017) A review: the trend of progress about pH probes in cell application in recent years. Analyst 142(1):30–41. https://doi.org/10.1039/C6AN01942K

    Article  CAS  Google Scholar 

  20. Ko M, Quiñones-Hinojosa A, Rao R (2020) Emerging links between endosomal pH and cancer. Cancer Metastasis Rev 39(2):519–534. https://doi.org/10.1007/s10555-020-09870-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Decker Y, Németh E, Schomburg R, Chemla A, Fülöp L, Menger MD, Liu Y, Fassbender K (2021) Decreased pH in the aging brain and Alzheimer’s disease. Neurobiol Aging 101:40–49. https://doi.org/10.1016/j.neurobiolaging.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Khan MI, Mukherjee K, Shoukat R, Dong H (2017) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23(10):4391–4404. https://doi.org/10.1007/s00542-017-3495-5

    Article  CAS  Google Scholar 

  23. Chen W, Ma X, Chen H, Hua Liu S, Yin J (2021) Fluorescent probes for pH and alkali metal ions. Coord Chem Rev 427:213584. https://doi.org/10.1016/j.ccr.2020.213584

    Article  CAS  Google Scholar 

  24. Kadian S, Manik G (2020) Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin. Food Chem 317:126457. https://doi.org/10.1016/j.foodchem.2020.126457

    Article  CAS  PubMed  Google Scholar 

  25. Gao P, Xie Z, Zheng M (2020) Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens Actuators B Chem 319:128265. https://doi.org/10.1016/j.snb.2020.128265

    Article  CAS  Google Scholar 

  26. Li S, Li L, Tu H, Zhang H, Silvester DS, Banks CE, Zou G, Hou H, Ji X (2021) The development of carbon dots: from the perspective of materials chemistry. Mater Today 51:188–207. https://doi.org/10.1016/j.mattod.2021.07.028

    Article  CAS  Google Scholar 

  27. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638. https://doi.org/10.1002/adma.201670162

    Article  CAS  PubMed  Google Scholar 

  28. Kou X, Jiang S, Park S, Meng L (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transactions 49:6915–6938. https://doi.org/10.1039/D0DT01004A

    Article  CAS  PubMed  Google Scholar 

  29. Holá K, Sudolská M, Kalytchuk S, Nachtigallová D, Ogach AL, Otyepka M, Zbořil R (2017) Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11:12402–12410. https://doi.org/10.1021/acsnano.7b06399

    Article  CAS  PubMed  Google Scholar 

  30. Su R, Guan Q, Cai W, Yang W, Xu Q, Guo Y, Zhang L, Fei L, Xu M (2019) Multi-color carbon dots for white light-emitting diodes. RSC Adv 9:9700–9708. https://doi.org/10.1039/C8RA09868A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Q, Gao L, Rao S-Q, Yang Z-Q, Li T, Gong X (2019) Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem 280:195–202. https://doi.org/10.1016/j.foodchem.2018.12.050

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Zhao L, Wu Y, Zhou A, Jiang X, Zhan Y, Sun Z (2022) Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce4+ and ratiometric detection of Al3+. Spectrochim Acta A Mol Biomol Spectrosc 282:121638. https://doi.org/10.1016/j.saa.2022.121638

    Article  CAS  PubMed  Google Scholar 

  33. Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y (2021) One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging. Microchim Acta 188(10):325. https://doi.org/10.1007/s00604-021-04969-w

    Article  CAS  Google Scholar 

  34. Cui H, Yang J, Lu H, Li L, Zhu X, Ding Y (2022) Near-infrared carbon dots for cell imaging and detecting ciprofoxacin by label-free fuorescence sensor based on aptamer. Microchim Acta 189:170. https://doi.org/10.1007/s00604-022-05273-x

    Article  CAS  Google Scholar 

  35. Han Z, Nan D, Yang H, Sun Q, Pan S, Liu H, Hu X (2019) Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sens Actuators B Chem 298:126842. https://doi.org/10.1016/j.snb.2019.126842

    Article  CAS  Google Scholar 

  36. Zhao N, Wang Y, Hou S, Zhao L (2020) Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchim Acta 187:351–361. https://doi.org/10.1007/s00604-020-04328-1

    Article  CAS  Google Scholar 

  37. Liao X, Chen C, Shi P, Yue L (2021) Determination of melamine in milk based on β-cyclodextrin modified carbon nanoparticles via host–guest recognition. Food Chem 338:127769. https://doi.org/10.1016/j.foodchem.2020.127769

    Article  CAS  PubMed  Google Scholar 

  38. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178. https://doi.org/10.1016/j.carbon.2016.04.003

    Article  CAS  Google Scholar 

  39. Tripathi KM, Ahn HT, Chung M, Le XA, Saini D, Bhati A, Sonkar SK, Kim MI, Kim TY (2020) N, S, and P-Co-doped carbon quantum dots: intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater Sci Eng 6(10):5527–5537. https://doi.org/10.1021/acsbiomaterials.0c00831

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Dong C, Xu J, Xuan J, Cheng Q, Bi H (2021) Nitrogen and chlorine co-doped carbon dots with synchronous excitation of multiple luminescence centers for blue-white emission. New J Chem 45(16):7056–7059. https://doi.org/10.1039/d1nj00951f

    Article  CAS  Google Scholar 

  41. Wang N, Zheng A-Q, Liu X, Chen J-J, Yang T, Chen M-L, Wang J-H (2018) Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces 10(9):7901–7909. https://doi.org/10.1021/acsami.8b00947

    Article  CAS  PubMed  Google Scholar 

  42. Hu Y, Gao Z, Luo J (2021) Fluorescence detection of malachite green in fish tissue using red emissive Se N, Cl-doped carbon dots. Food Chem 335:127677. https://doi.org/10.1016/j.foodchem.2020.127677

    Article  CAS  PubMed  Google Scholar 

  43. Sun S, Zhang L, Jiang K, Wu A, Lin H (2016) Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater 28(23):8659–8668. https://doi.org/10.1021/acs.chemmater.6b03695

    Article  CAS  Google Scholar 

  44. Jiao Y, Gong X, Han H, Gao Y, Lu W, Liu Y, Xian M, Shuang S, Dong C (2018) Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta 1042:125–132. https://doi.org/10.1016/j.aca.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  45. Zhao C, Jiao Y, Gao Z, Yang Y, Li H (2018) N, S co-doped carbon dots for temperature probe and the detection of tetracycline based on the inner filter effect. J Photochem Photobiol A Chem 367:137–144. https://doi.org/10.1016/j.jphotochem.2018.08.023

    Article  CAS  Google Scholar 

  46. Feng Y, Zhong D, Miao H, Yang X (2015) Carbon dots derived from rose flowers for tetracycline sensing. Talanta 140:128–133. https://doi.org/10.1016/j.talanta.2015.03.038

    Article  CAS  PubMed  Google Scholar 

  47. Miao H, Wang Y, Yang X (2018) Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale 10(17):8139–8145. https://doi.org/10.1039/C8NR02405G

    Article  CAS  PubMed  Google Scholar 

  48. Yan Y, Liu JH, Li RS, Li YF, Huang CZ, Zhen SJ (2019) Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Anal Chim Acta 1063:144–151. https://doi.org/10.1016/j.aca.2019.02.047

    Article  CAS  PubMed  Google Scholar 

  49. Yang P, Zhu Z, Chen M, Chen W, Zhou X (2018) Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Opt Mater 85:329–336. https://doi.org/10.1016/j.optmat.2018.06.034

    Article  CAS  Google Scholar 

  50. Uriarte D, Domini C, Garrido M (2019) New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples. Talanta 201:143–148. https://doi.org/10.1016/j.talanta.2019.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support for this work from the Shanxi Natural Science Foundation (201801D121074).

Author information

Authors and Affiliations

Authors

Contributions

Fang Liu and Yong Zhang wrote the main manuscript text; Changjian Zhu and Yingte Wang prepared fgures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Ethical Approval

The Oocystis were provided by the Institute of Biomedical Sciences, Shanxi University, and Oocystis studies were approved by Institutional Animal Care and Use Committee (IACUC) at Shanxi University. Selection of Oocystis complied with the State Council and the State Science and Technology Commission (China) promulgated regulations for the administration of affairs concerning experiment animals. All experiments were performed in compliance with Regulations for the Administration of Affairs Concerning Experimental Animals promulgated by Decree No. 2 of the State Science and Technology Commission (1988) (China) or the formulated guidelines for the humane use of laboratory animals in research by Association for Research to ensure enough respect for the life of experiment animals.

Competing Interests

The authors declare that they have no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2342 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhu, C., Wang, Y. et al. Nitrogen and Chlorine Co-doped Carbon Dots as a Highly Selective and Sensitive Fluorescent Probe for Sensing of PH, Tetracycline Detection and Cell Imaging. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03360-7

Keywords

Navigation