Skip to main content

Advertisement

Log in

Emerging links between endosomal pH and cancer

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not relevant for this review article.

Abbreviations

EGFR:

Epidermal growth factor receptor

ESCC:

Esophageal squamous cell carcinoma

GBM:

Glioblastoma

GPCR:

G protein coupled receptor

GEF:

Guanine nucleotide exchange factor

NHE:

Sodium hydrogen exchanger

RTK:

Receptor tyrosine kinase

Tfn:

Transferrin

References

  1. Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews. Cancer, 11(9), 671–677.

    CAS  PubMed  Google Scholar 

  2. White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130(4), 663–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Damaghi, M., Wojtkowiak, J. W., & Gillies, R. J. (2013). pH sensing and regulation in cancer. Frontiers in Physiology, 4, 370.

    PubMed  PubMed Central  Google Scholar 

  4. Persi, E., Duran-Frigola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L., Gillies, R. J., & Ruppin, E. (2018). Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications, 9(1), 2997.

    PubMed  PubMed Central  Google Scholar 

  5. Boedtkjer, E., & Pedersen, S. F. (2020). The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology, 82, 103–126.

    CAS  PubMed  Google Scholar 

  6. Zhao, R., Oxley, D., Smith, T. S., Follows, G. A., Green, A. R., & Alexander, D. R. (2007). DNA damage-induced Bcl-xL deamidation is mediated by NHE-1 antiport regulated intracellular pH. PLoS Biology, 5(1), e1.

    PubMed  Google Scholar 

  7. Liao, C., Hu, B., Arno, M. J., & Panaretou, B. (2007). Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin. Molecular Pharmacology, 71(2), 416–425.

    CAS  PubMed  Google Scholar 

  8. Amith, S. R., & Fliegel, L. (2013). Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis. Cancer Research, 73(4), 1259–1264.

    CAS  PubMed  Google Scholar 

  9. Hjelmeland, A. B., Wu, Q., Heddleston, J. M., Choudhary, G. S., MacSwords, J., Lathia, J. D., McLendon, R., Lindner, D., Sloan, A., & Rich, J. N. (2011). Acidic stress promotes a glioma stem cell phenotype. Cell Death and Differentiation, 18(5), 829–840.

    CAS  PubMed  Google Scholar 

  10. Boedtkjer, E. and S.F. Pedersen, The acidic tumor microenvironment as a driver of Cancer. Annual Review of Physiology, 2019.

  11. Huang, S., Tang, Y., Peng, X., Cai, X., Wa, Q., Ren, D., Li, Q., Luo, J., Li, L., Zou, X., & Huang, S. (2016). Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncology Reports, 36(4), 2025–2032.

    CAS  PubMed  Google Scholar 

  12. Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1638), 20130099.

    PubMed  PubMed Central  Google Scholar 

  13. Kondapalli, K. C., et al. (2015). A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nature Communications, 6, 6289.

    CAS  PubMed  Google Scholar 

  14. Fan, S. H., Numata, Y., & Numata, M. (2016). Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Molecular Biology of the Cell, 27(4), 702–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shingu, T., Ho, A. L., Yuan, L., Zhou, X., Dai, C., Zheng, S., Wang, Q., Zhong, Y., Chang, Q., Horner, J. W., Liebelt, B. D., Yao, Y., Hu, B., Chen, Y., Fuller, G. N., Verhaak, R. G., Heimberger, A. B., & Hu, J. (2017). Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nature Genetics, 49(1), 75–86.

    CAS  PubMed  Google Scholar 

  16. Lanzetti, L., & Di Fiore, P. P. (2008). Endocytosis and cancer: an 'insider' network with dangerous liaisons. Traffic, 9(12), 2011–2021.

    CAS  PubMed  Google Scholar 

  17. Mellman, I., & Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harbor Perspectives in Biology, 5(12), a016949.

    PubMed  PubMed Central  Google Scholar 

  18. Schmid, S. L. (2017). Reciprocal regulation of signaling and endocytosis: implications for the evolving cancer cell. The Journal of Cell Biology, 216(9), 2623–2632.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schenck, A., Goto-Silva, L., Collinet, C., Rhinn, M., Giner, A., Habermann, B., Brand, M., & Zerial, M. (2008). The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell, 133(3), 486–497.

    CAS  PubMed  Google Scholar 

  20. Stasyk, T., & Huber, L. A. (2016). Spatio-temporal parameters of Endosomal signaling in cancer: implications for new treatment options. Journal of Cellular Biochemistry, 117(4), 836–843.

    CAS  PubMed  Google Scholar 

  21. Hu, Y. B., et al. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener, 4, 18.

    PubMed  PubMed Central  Google Scholar 

  22. Scott, C. C., & Gruenberg, J. (2011). Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays, 33(2), 103–110.

    CAS  PubMed  Google Scholar 

  23. Maranda, B., Brown, D., Bourgoin, S., Casanova, J. E., Vinay, P., Ausiello, D. A., & Marshansky, V. (2001). Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. The Journal of Biological Chemistry, 276(21), 18540–18550.

    CAS  PubMed  Google Scholar 

  24. Marshansky, V. (2007). The V-ATPase a2-subunit as a putative endosomal pH-sensor. Biochemical Society Transactions, 35(Pt 5), 1092–1099.

    CAS  PubMed  Google Scholar 

  25. Hosokawa, H., Dip, P. V., Merkulova, M., Bakulina, A., Zhuang, Z., Khatri, A., Jian, X., Keating, S. M., Bueler, S. A., Rubinstein, J. L., Randazzo, P. A., Ausiello, D. A., Grüber, G., & Marshansky, V. (2013). The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. The Journal of Biological Chemistry, 288(8), 5896–5913.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Graves, A. R., Curran, P. K., Smith, C. L., & Mindell, J. A. (2008). The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature, 453(7196), 788–792.

    CAS  PubMed  Google Scholar 

  27. Pedersen, S. F., & Counillon, L. (2019). The SLC9A-C mammalian Na(+)/H(+) exchanger family: molecules, mechanisms, and physiology. Physiological Reviews, 99(4), 2015–2113.

    CAS  PubMed  Google Scholar 

  28. Pamarthy, S., Kulshrestha, A., Katara, G. K., & Beaman, K. D. (2018). The curious case of vacuolar ATPase: regulation of signaling pathways. Molecular Cancer, 17(1), 41.

    PubMed  PubMed Central  Google Scholar 

  29. Whitton, B., Okamoto, H., Packham, G., & Crabb, S. J. (2018). Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Medicine, 7(8), 3800–3811.

    PubMed  PubMed Central  Google Scholar 

  30. Poroca, D. R., Pelis, R. M., & Chappe, V. M. (2017). ClC channels and transporters: structure, physiological functions, and implications in human chloride channelopathies. Frontiers in Pharmacology, 8, 151.

    PubMed  PubMed Central  Google Scholar 

  31. Novarino, G., Weinert, S., Rickheit, G., & Jentsch, T. J. (2010). Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science, 328(5984), 1398–1401.

    CAS  PubMed  Google Scholar 

  32. Smith, A. J., Reed, A. A., Loh, N. Y., Thakker, R. V., & Lippiat, J. D. (2009). Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. American Journal of Physiology. Renal Physiology, 296(2), F390–F397.

    CAS  PubMed  Google Scholar 

  33. Devuyst, O., & Thakker, R. V. (2010). Dent's disease. Orphanet Journal of Rare Diseases, 5, 28.

    PubMed  PubMed Central  Google Scholar 

  34. Weinert, S., Jabs, S., Supanchart, C., Schweizer, M., Gimber, N., Richter, M., Rademann, J., Stauber, T., Kornak, U., & Jentsch, T. J. (2010). Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl-accumulation. Science, 328(5984), 1401–1403.

    CAS  PubMed  Google Scholar 

  35. Stauber, T., & Jentsch, T. J. (2013). Chloride in vesicular trafficking and function. Annual Review of Physiology, 75, 453–477.

    CAS  PubMed  Google Scholar 

  36. Hong, S., Bi, M., Wang, L., Kang, Z., Ling, L., & Zhao, C. (2015). CLC-3 channels in cancer (review). Oncology Reports, 33(2), 507–514.

    CAS  PubMed  Google Scholar 

  37. Lee, C., Kang, H. J., von Ballmoos, C., Newstead, S., Uzdavinys, P., Dotson, D. L., Iwata, S., Beckstein, O., Cameron, A. D., & Drew, D. (2013). A two-domain elevator mechanism for sodium/proton antiport. Nature, 501(7468), 573–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brett, C. L., Donowitz, M., & Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology. Cell Physiology, 288(2), C223–C239.

    CAS  PubMed  Google Scholar 

  39. D'Souza, S., Garcia-Cabado, A., Yu, F., Teter, K., Lukacs, G., Skorecki, K., Moore, H. P., Orlowski, J., & Grinstein, S. (1998). The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. The Journal of Biological Chemistry, 273(4), 2035–2043.

    CAS  PubMed  Google Scholar 

  40. Gekle, M., et al. (1999). Inhibition of Na+-H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. The Journal of Physiology, 520(Pt 3), 709–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gandhi, S. P., & Stevens, C. F. (2003). Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature, 423(6940), 607–613.

    CAS  PubMed  Google Scholar 

  42. Atluri, P. P., & Ryan, T. A. (2006). The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. The Journal of Neuroscience, 26(8), 2313–2320.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Diering, G. H., Numata, Y., Fan, S., Church, J., & Numata, M. (2013). Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling. Molecular Biology of the Cell, 24(21), 3435–3448.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohgaki, R., Fukura, N., Matsushita, M., Mitsui, K., & Kanazawa, H. (2008). Cell surface levels of organellar Na+/H+ exchanger isoform 6 are regulated by interaction with RACK1. The Journal of Biological Chemistry, 283(7), 4417–4429.

    CAS  PubMed  Google Scholar 

  45. Lin, P. J., et al. (2005). Secretory carrier membrane proteins interact and regulate trafficking of the organellar (Na+,K+)/H+ exchanger NHE7. Journal of Cell Science, 118(Pt 9), 1885–1897.

    CAS  PubMed  Google Scholar 

  46. Lin, P. J., Williams, W. P., Kobiljski, J., & Numata, M. (2007). Caveolins bind to (Na+, K+)/H+ exchanger NHE7 by a novel binding module. Cellular Signalling, 19(5), 978–988.

    CAS  PubMed  Google Scholar 

  47. Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K., & Kanazawa, H. (2005). Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. The Journal of Biological Chemistry, 280(2), 1561–1572.

    CAS  PubMed  Google Scholar 

  48. Hill, J. K., Brett, C. L., Chyou, A., Kallay, L. M., Sakaguchi, M., Rao, R., & Gillespie, P. G. (2006). Vestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9. The Journal of Neuroscience, 26(39), 9944–9955.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Numata, M., & Orlowski, J. (2001). Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. The Journal of Biological Chemistry, 276(20), 17387–17394.

    CAS  PubMed  Google Scholar 

  50. Kondapalli, K. C., et al. (2013). Functional evaluation of autism-associated mutations in NHE9. Nature Communications, 4, 2510.

    PubMed  Google Scholar 

  51. Prasad, H., & Rao, R. (2015). The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. The Journal of Biological Chemistry, 290(9), 5311–5327.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lucien, F., et al. (2017). Hypoxia-induced mobilization of NHE6 to the plasma membrane triggers endosome hyperacidification and chemoresistance. Nature Communications, 8, 15884.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ouyang, Q., et al. (2013). Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron, 80(1), 97–112.

    CAS  PubMed  Google Scholar 

  54. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G., & Vogelstein, B. (2015). Only three driver gene mutations are required for the development of lung and colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 118–123.

    CAS  PubMed  Google Scholar 

  55. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    CAS  PubMed  Google Scholar 

  56. Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, L. W., Maher, V. M., McCormick, J., & Schindler, M. (1990). Alkalinization of the lysosomes is correlated with ras transformation of murine and human fibroblasts. The Journal of Biological Chemistry, 265(9), 4775–4777.

    CAS  PubMed  Google Scholar 

  58. Weisz, O. A. (2003). Organelle acidification and disease. Traffic, 4(2), 57–64.

    CAS  PubMed  Google Scholar 

  59. Bertolini, I., Terrasi, A., Martelli, C., Gaudioso, G., di Cristofori, A., Storaci, A. M., Formica, M., Braidotti, P., Todoerti, K., Ferrero, S., Caroli, M., Ottobrini, L., Vaccari, T., & Vaira, V. (2019). A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine, 41, 225–235.

    PubMed  PubMed Central  Google Scholar 

  60. Morita, T., Nagaki, T., Fukuda, I., & Okumura, K. (1992). Clastogenicity of low pH to various cultured mammalian cells. Mutation Research, 268(2), 297–305.

    CAS  PubMed  Google Scholar 

  61. Xiao, H., Li, T. K., Yang, J. M., & Liu, L. F. (2003). Acidic pH induces topoisomerase II-mediated DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5205–5210.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, H. Y., Hormi-Carver, K., Zhang, X., Spechler, S. J., & Souza, R. F. (2009). In benign Barrett's epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. Cancer Research, 69(23), 9083–9089.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pedersen, S.F., et al. Alternating pH landscapes shape epithelial cancer initiation and progression: focus on pancreatic cancer Bioessays, 2017. 39(6).

  64. Massonneau, J., Ouellet, C., Lucien, F., Dubois, C. M., Tyler, J., & Boissonneault, G. (2018). Suboptimal extracellular pH values alter DNA damage response to induced double-strand breaks. FEBS Open Bio, 8(3), 416–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Flinck, M., Kramer, S. H., & Pedersen, S. F. (2018). Roles of pH in control of cell proliferation. Acta Physiologica (Oxford, England), 223(3), e13068.

    CAS  Google Scholar 

  66. Marino, M. L., Pellegrini, P., di Lernia, G., Djavaheri-Mergny, M., Brnjic, S., Zhang, X., Hägg, M., Linder, S., Fais, S., Codogno, P., & de Milito, A. (2012). Autophagy is a protective mechanism for human melanoma cells under acidic stress. The Journal of Biological Chemistry, 287(36), 30664–30676.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., Lloyd, M. C., Sloane, B. F., & Gillies, R. J. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research, 72(16), 3938–3947.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie, W. Y., Zhou, X. D., Li, Q., Chen, L. X., & Ran, D. H. (2015). Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Experimental Cell Research, 339(2), 270–279.

    CAS  PubMed  Google Scholar 

  69. Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T., & Cardelli, J. A. (2009). Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic, 10(6), 737–753.

    CAS  PubMed  Google Scholar 

  70. Glunde, K., Guggino, S. E., Solaiyappan, M., Pathak, A. P., Ichikawa, Y., & Bhujwalla, Z. M. (2003). Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia, 5(6), 533–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ueda, M., Iguchi, T., Masuda, T., Komatsu, H., Nambara, S., Sakimura, S., Hirata, H., Uchi, R., Eguchi, H., Ito, S., Sugimachi, K., Mizushima, T., Doki, Y., Mori, M., & Mimori, K. (2017). Up-regulation of SLC9A9 promotes cancer progression and is involved in poor prognosis in colorectal cancer. Anticancer Research, 37(5), 2255–2263.

    CAS  PubMed  Google Scholar 

  72. Kurata, T., Rajendran, V., Fan, S., Ohta, T., Numata, M., & Fushida, S. (2019). NHE5 regulates growth factor signaling, integrin trafficking, and degradation in glioma cells. Clinical & Experimental Metastasis, 36(6), 527–538.

    CAS  Google Scholar 

  73. Onishi, I., Lin, P. J., Numata, Y., Austin, P., Cipollone, J., Roberge, M., Roskelley, C. D., & Numata, M. (2012). Organellar (Na+, K+)/H+ exchanger NHE7 regulates cell adhesion, invasion and anchorage-independent growth of breast cancer MDA-MB-231 cells. Oncology Reports, 27(2), 311–317.

    CAS  PubMed  Google Scholar 

  74. Xu, H., Li, J., Chen, H., & Ghishan, F. K. (2019). NHE8 deficiency promotes colitis-associated cancer in mice via expansion of Lgr5-expressing cells. Cellular and Molecular Gastroenterology and Hepatology, 7(1), 19–31.

    PubMed  Google Scholar 

  75. Chen, J., Yang, H., Wen, J., Luo, K., Liu, Q., Huang, Y., Zheng, Y., Tan, Z., Huang, Q., & Fu, J. (2015). NHE9 induces chemoradiotherapy resistance in esophageal squamous cell carcinoma by upregulating the Src/Akt/beta-catenin pathway and Bcl-2 expression. Oncotarget, 6(14), 12405–12420.

    PubMed  PubMed Central  Google Scholar 

  76. Raghunand, N., Mahoney, B. P., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochemical Pharmacology, 66(7), 1219–1229.

    CAS  PubMed  Google Scholar 

  77. Mahoney, B. P., Raghunand, N., Baggett, B., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochemical Pharmacology, 66(7), 1207–1218.

    CAS  PubMed  Google Scholar 

  78. Zhitomirsky, B., & Assaraf, Y. G. (2016). Lysosomes as mediators of drug resistance in cancer. Drug Resistance Updates, 24, 23–33.

    PubMed  Google Scholar 

  79. Li, D., Zhou, L., Huang, J., & Xiao, X. (2016). Effect of multidrug resistance 1/P-glycoprotein on the hypoxia-induced multidrug resistance of human laryngeal cancer cells. Oncology Letters, 12(2), 1569–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tredan, O., et al. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454.

    CAS  PubMed  Google Scholar 

  81. Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer, 11(6), 393–410.

    CAS  PubMed  Google Scholar 

  82. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J., & Gillies, R. J. (2011). Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Molecular Pharmaceutics, 8(6), 2032–2038.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lucien, F., Lavoie, R. R., & Dubois, C. M. (2018). Targeting endosomal pH for cancer chemotherapy. Molecular & Cellular Oncology, 5(3), e1435184.

    Google Scholar 

  84. Chen, J., Wen, J., Zheng, Y., Yang, H., Luo, K., Liu, Q., Hu, R., Tan, Z., Huang, Q., & Fu, J. (2015). Prognostic significance of SLC9A9 in patients with resectable esophageal squamous cell carcinoma. Tumour Biology, 36(9), 6797–6803.

    CAS  PubMed  Google Scholar 

  85. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  86. Tang, J., et al., miR-204-5p regulates cell proliferation, invasion, and apoptosis by targeting IL-11 in esophageal squamous cell carcinoma. J Cell Physiol, 2019.

  87. Gomez Zubieta, D. M., Hamood, M. A., Beydoun, R., Pall, A. E., & Kondapalli, K. C. (2017). MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells. Cell Communication and Signaling: CCS, 15(1), 55.

    PubMed  PubMed Central  Google Scholar 

  88. Tamtaji, O.R., et al., New trends in glioma cancer therapy: Targeting Na(+) /H (+) exchangers. Journal of Cellular Physiology, 2019.

  89. Lathia, J., Liu, H., & Matei, D. (2020). The clinical impact of cancer stem cells. Oncologist, 25(2), 123–131.

    PubMed  Google Scholar 

  90. Liu, X., Taftaf, R., Kawaguchi, M., Chang, Y. F., Chen, W., Entenberg, D., Zhang, Y., Gerratana, L., Huang, S., Patel, D. B., Tsui, E., Adorno-Cruz, V., Chirieleison, S. M., Cao, Y., Harney, A. S., Patel, S., Patsialou, A., Shen, Y., Avril, S., Gilmore, H. L., Lathia, J. D., Abbott, D. W., Cristofanilli, M., Condeelis, J. S., & Liu, H. (2019). Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discovery, 9(1), 96–113.

    PubMed  Google Scholar 

  91. Bao, S., Wu, Q., McLendon, R., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., & Rich, J. N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.

    CAS  PubMed  Google Scholar 

  92. Shibata, M., & Hoque, M. O. (2019). Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers (Basel), 11(5), 732.

    CAS  Google Scholar 

  93. Donowitz, M., Ming Tse, C., & Fuster, D. (2013). SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Molecular Aspects of Medicine, 34(2–3), 236–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, A., Li, J., Zhao, Y., Johansson, M. E., Xu, H., & Ghishan, F. K. (2015). Loss of NHE8 expression impairs intestinal mucosal integrity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 309(11), G855–G864.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, C., Xu, H., Zhang, B., Johansson, M. E., Li, J., Hansson, G. C., & Ghishan, F. K. (2013). NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. American Journal of Physiology. Cell Physiology, 305(1), C121–C128.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. de Sousa e Melo, F., et al. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680.

    PubMed  Google Scholar 

  97. Schepers, A. G., Snippert, H. J., Stange, D. E., van den Born, M., van Es, J., van de Wetering, M., & Clevers, H. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.

    CAS  PubMed  Google Scholar 

  98. Rofstad, E. K., Mathiesen, B., Kindem, K., & Galappathi, K. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66(13), 6699–6707.

    CAS  PubMed  Google Scholar 

  99. Montcourrier, P., et al. (1994). Characterization of very acidic phagosomes in breast cancer cells and their association with invasion. Journal of Cell Science, 107(Pt 9), 2381–2391.

    PubMed  Google Scholar 

  100. Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337.

    Google Scholar 

  101. Picelli, S., et al. (2008). Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q. BMC Cancer, 8, 87.

    PubMed  PubMed Central  Google Scholar 

  102. Tamura, K., Furihata, M., Tsunoda, T., Ashida, S., Takata, R., Obara, W., Yoshioka, H., Daigo, Y., Nasu, Y., Kumon, H., Konaka, H., Namiki, M., Tozawa, K., Kohri, K., Tanji, N., Yokoyama, M., Shimazui, T., Akaza, H., Mizutani, Y., Miki, T., Fujioka, T., Shuin, T., Nakamura, Y., & Nakagawa, H. (2007). Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Research, 67(11), 5117–5125.

    CAS  PubMed  Google Scholar 

  103. Kondapalli, K. C., Prasad, H., & Rao, R. (2014). An inside job: how endosomal Na+/H+ exchangers link to autism and neurological disease. Frontiers in Cellular Neuroscience, 8, 172.

    PubMed  PubMed Central  Google Scholar 

  104. Prasad, H., & Rao, R. (2015). Applying knowledge of autism to brain cancer management: What do we know? Future Oncology, 11(13), 1847–1850.

    CAS  PubMed  Google Scholar 

  105. Schwede, M., Garbett, K., Mirnics, K., Geschwind, D. H., & Morrow, E. M. (2014). Genes for endosomal NHE6 and NHE9 are misregulated in autism brains. Molecular Psychiatry, 19(3), 277–279.

    CAS  PubMed  Google Scholar 

  106. White, K. A., Kisor, K., & Barber, D. L. (2019). Intracellular pH dynamics and charge-changing somatic mutations in cancer. Cancer Metastasis Reviews, 38(1–2), 17–24.

    CAS  PubMed  Google Scholar 

  107. Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., & Sullivan, M. (2012). PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research, 40(Database issue), D261–D270.

    CAS  PubMed  Google Scholar 

  108. Chen, R., et al. (2009). Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. Journal of Proteome Research, 8(2), 651–661.

    CAS  PubMed  Google Scholar 

  109. Lewandrowski, U., Zahedi, R. P., Moebius, J., Walter, U., & Sickmann, A. (2007). Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Molecular & Cellular Proteomics, 6(11), 1933–1941.

    CAS  Google Scholar 

  110. Gebert, L. F. R., & MacRae, I. J. (2019). Regulation of microRNA function in animals. Nature Reviews. Molecular Cell Biology, 20(1), 21–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Villegas-Ruiz, V., Juárez-Méndez, S., Pérez-González, O. A., Arreola, H., Paniagua-García, L., Parra-Melquiadez, M., Peralta-Rodríguez, R., López-Romero, R., Monroy-García, A., Mantilla-Morales, A., Gómez-Gutiérrez, G., Román-Bassaure, E., & Salcedo, M. (2014). Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a. International Journal of Clinical and Experimental Pathology, 7(4), 1389–1401.

    PubMed  PubMed Central  Google Scholar 

  112. How, C., Hui, A. B., Alajez, N. M., Shi, W., Boutros, P. C., Clarke, B. A., Yan, R., Pintilie, M., Fyles, A., Hedley, D. W., Hill, R. P., Milosevic, M., & Liu, F. F. (2013). MicroRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer. PLoS One, 8(7), e67846.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chong, G. O., Jeon, H. S., Han, H. S., Son, J. W., Lee, Y. H., Hong, D. G., Park, H. J., Lee, Y. S., & Cho, Y. L. (2017). Overexpression of microRNA-196b accelerates invasiveness of cancer cells in recurrent epithelial ovarian cancer through regulation of homeobox A9. Cancer Genomics Proteomics, 14(2), 137–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Milosavljevic, N., Monet, M., Léna, I., Brau, F., Lacas-Gervais, S., Feliciangeli, S., Counillon, L., & Poët, M. (2014). The intracellular Na(+)/H(+) exchanger NHE7 effects a Na(+)-coupled, but not K(+)-coupled proton-loading mechanism in endocytosis. Cell Reports, 7(3), 689–696.

    CAS  PubMed  Google Scholar 

  115. Prasad, H., & Rao, R. (2018). Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proceedings of the National Academy of Sciences of the United States of America, 115(28), E6640–E6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Prasad, H., & Rao, R. (2018). Histone deacetylase-mediated regulation of endolysosomal pH. The Journal of Biological Chemistry, 293(18), 6721–6735.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tzeng, S. Y., Guerrero-Cázares, H., Martinez, E. E., Sunshine, J. C., Quiñones-Hinojosa, A., & Green, J. J. (2011). Non-viral gene delivery nanoparticles based on poly (beta-amino esters) for treatment of glioblastoma. Biomaterials, 32(23), 5402–5410.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kozielski, K. L., Ruiz-Valls, A., Tzeng, S. Y., Guerrero-Cázares, H., Rui, Y., Li, Y., Vaughan, H. J., Gionet-Gonzales, M., Vantucci, C., Kim, J., Schiapparelli, P., al-Kharboosh, R., Quiñones-Hinojosa, A., & Green, J. J. (2019). Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials, 209, 79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pall, A. E., Juratli, L., Guntur, D., Bandyopadhyay, K., & Kondapalli, K. C. (2019). A gain of function paradox: Targeted therapy for glioblastoma associated with abnormal NHE9 expression. Journal of Cellular and Molecular Medicine, 23(11), 7859–7872.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Baltazar, G. C., Guha, S., Lu, W., Lim, J., Boesze-Battaglia, K., Laties, A. M., Tyagi, P., Kompella, U. B., & Mitchell, C. H. (2012). Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One, 7(12), e49635.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. H., McBrayer, M., Wolfe, D. M., Haslett, L. J., Kumar, A., Sato, Y., Lie, P. P., Mohan, P., Coffey, E. E., Kompella, U., Mitchell, C. H., Lloyd-Evans, E., & Nixon, R. A. (2015). Presenilin 1 maintains lysosomal Ca(2+) homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Reports, 12(9), 1430–1444.

    CAS  PubMed  Google Scholar 

  122. Mitterreiter, S., Page, R. M., Kamp, F., Hopson, J., Winkler, E., Ha, H. R., Hamid, R., Herms, J., Mayer, T. U., Nelson, D. J., Steiner, H., Stahl, T., Zeitschel, U., Rossner, S., Haass, C., & Lichtenthaler, S. F. (2010). Bepridil and amiodarone simultaneously target the Alzheimer's disease beta- and gamma-secretase via distinct mechanisms. The Journal of Neuroscience, 30(26), 8974–8983.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, J., Chen, J., del Carmen Vitery, M., Osei-Owusu, J., Chu, J., Yu, H., Sun, S., & Qiu, Z. (2019). PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science, 364(6438), 395–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Fliegel, L. (2019). Structural and functional changes in the Na(+)/H(+) exchanger isoform 1, induced by Erk1/2 phosphorylation. International Journal of Molecular Sciences, 20(10), 2378.

    CAS  PubMed Central  Google Scholar 

  125. Norholm, A. B., et al. (2011). The intracellular distal tail of the Na+/H+ exchanger NHE1 is intrinsically disordered: implications for NHE1 trafficking. Biochemistry, 50(17), 3469–3480.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.J.K acknowledges the support of the graduate training programs in Cellular & Molecular Medicine and Nanotechnology for Cancer Research at the Johns Hopkins University.

Funding

M.J.K. is a recipient of Ruth L. Kirschstein Individual National Research Service Award F31CA220967. R.R. acknowledges the support of grants from the NIH (R01DK108304) and BSF (13044). A.Q.H. was supported by the Mayo Clinic Professorship, the Mayo Clinic Clinician Investigator award, the Florida Department of Health Cancer Research Chair Fund, as well as the National Institutes of Health (R43CA221490, R01CA200399, R01CA195503, R01CA216855).

Author information

Authors and Affiliations

Authors

Contributions

M.J.K., R.R., and A.Q.H. wrote the paper and M.J.K. made the figures.

Corresponding authors

Correspondence to Alfredo Quiñones-Hinojosa or Rajini Rao.

Ethics declarations

Conflict of interest

None.

Ethics approval and consent to participate

Not relevant for this review article.

Consent for publication

All authors have consented to this submission.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, M., Quiñones-Hinojosa, A. & Rao, R. Emerging links between endosomal pH and cancer. Cancer Metastasis Rev 39, 519–534 (2020). https://doi.org/10.1007/s10555-020-09870-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09870-1

Keywords

Navigation