Skip to main content

Advertisement

Log in

Combination of 3D Fluorescence/PARAFAC and UV–Vis Absorption for the Characterization of Agricultural Soils from Morocco

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present study, combining UV–Visible absorption and 3D fluorescence supported by PARAFAC chemometric analysis, focused on the characterization of soil water extractable organic matter (WEOM) in the zone of Doukkala located near the Atlantic coast of Morocco. The extracts, in water, of a set of 30 samples covering the four main types of agricultural soils in the region (commonly labeled Tirs, Faid, Hamri and R’mel) were investigated. \({\mathrm{E}}_{2}/{\mathrm{E}}_{3}\) and \({\mathrm{E}}_{4}/{\mathrm{E}}_{6}\) absorbance ratios \(, {\mathrm{S}}_{275-295}\) and \({\mathrm{S}}_{350-400}\) spectral slopes, along with their ratios\({\mathrm{S}}_{\mathrm{R}}\), as well as the fluorescence \(\mathrm{FI}\) and humification \(\mathrm{HIX}\) indices were calculated and interpreted. In the four soil types, these parameters revealed, on the one hand, organic materials of terrigenous origin with some biological component, and showed, on the other hand, that these materials are in similar stages of humification with an important humic character. In all the soils investigated, 3D fluorescence crossed with PARAFAC chemometrics highlighted the absence of any protein component and revealed the prevalence of the fulvic acids fraction in the organic matter humic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zsolnay A (1996) Chapter 4 - Dissolved Humus in Soil Waters. In: Piccolo A, Humic Substances in Terrestrial Ecosystems, Elsevier Science. Pages 171–223. https://doi.org/10.1016/B978-044481516-3/50005-0

  2. Chantigny MH, Harrison-Kirk T, Curtin D, Beare M (2014) Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biol Biochem 161-166. https://doi.org/10.1016/j.soilbio.2014.04.011

  3. Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 357-380. https://doi.org/10.1016/S0016-7061(02)00370-1

  4. Wang W, Zhang W, Majidzadeh H, He C, Shi Q, Kong Q, Yang Z, Wang J (2021) Depletion of Soil Water-Extractable Organic Matter With Long-Term Coverage by Impervious Surfaces. Front Environ Sci 9:290. https://doi.org/10.3389/fenvs.2021.714311

  5. Sun HY, Koal P, Gerl G et al (2017) Water-extractable organic matter and its fluorescence fractions in response to minimum tillage and organic farming in a Cambisol. Chem Biol Technol Agric 4:15. https://doi.org/10.1186/s40538-017-0097-5

    Article  CAS  Google Scholar 

  6. Hassoun H, Lamhasni T, Foudeil S, El Bakkali A, Ait Lyazidi S, Haddad M, Choukrad M, Hnach M (2017) Total fluorescence fingerprinting of pesticides: a reliable approach for continuous monitoring of soils and waters. J Fluoresc 27:1633–1642. https://doi.org/10.1007/s10895-017-2100-8

    Article  CAS  PubMed  Google Scholar 

  7. Badraoui M, Agbani M, Soudi B (2000) Evolution de la qualité des sols sous mise en valeur intensive au Maroc. Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc. https://agrimaroc.net/intensificationagricole/03-badraoui.pdf. Accessed 15 July 2022

  8. Foudeil S, Hassoun H, Lamhasni T, Ait Lyazidi S, Benyaich F, Haddad M, Choukrad M, Boughdad A, Bounakhla M, Bounouira H, Duarte RMBO, Cachada A, Duarte AC (2015) Catalogue of total excitation-emission and total synchronous fluorescence maps with synchronous fluorescence spectra of homologated fluorescent pesticides in large use in Morocco: Development of a spectrometric low cost and direct analysis as an alert method in case of massive contamination of soils and waters by fluorescent pesticides. Environ Sci Pollut Res 22:6766–6777. https://doi.org/10.1007/s11356-014-3807-6

    Article  CAS  Google Scholar 

  9. Billaux P, and Bryssine , (1967) Les sols du Maroc. In : Congrès de pédologie méditerranéenne: Excursion au Maroc. Cahiers de la Recherche Agronomique. 1:59–101. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_5/b_fdi_10-11/13703.pdf. Accessed 13 July 2022

  10. Lahbabi A, Anouar K (2009) Rapport de mission « Etude d’Impact sur l’Environnement du projet de Modernisation de l’Agriculture Irriguée dans le bassin de l’Oum Er Rbia ». PROJET UTF/MOR/013/MOR, Assistance technique au projet d’amélioration de la grande irrigation entre L’Organisation des Nations Unies pour l’Alimentation et l’Agriculture (FAO) et le Ministère de l’Agriculture et de la Pêche Maritime Maroc. https://www.academia.edu/47418622/Morocco_Oum_Er_Rbia_Irrigated_Agriculture_Modernization_Project_environmental_report. Accessed 15 July 2022

  11. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969. https://doi.org/10.4319/lo.2008.53.3.0955

    Article  Google Scholar 

  12. Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55(3):1159–1171. https://doi.org/10.4319/lo.2010.55.3.1159

    Article  CAS  Google Scholar 

  13. Shi W, Zhuang WE, Hur J, Yang L (2021) Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. Water Res 188:116406. https://doi.org/10.1016/j.watres.2020.116406

    Article  CAS  PubMed  Google Scholar 

  14. Wang YH, Zhang P, He C, Yu JC, Shi Q, Dahlgren RA, Spencer RGM, Yang EB, Wang JJ (2022) Molecular signatures of soil-derived dissolved organic matter constrained by mineral weathering. Fundamental Research 2667-3258. https://doi.org/10.1016/j.fmre.2022.01.032

  15. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6. https://doi.org/10.4319/lom.2008.6.572

  16. Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC Anal Methods 5(23):6557. https://doi.org/10.1039/c3ay41160e

    Article  CAS  Google Scholar 

  17. Murphy KR, Stedmon CA, Graeber DR (2013) PARAFAC Anal Methods. http://dreem.openfluor.org/. Accessed 15 July 2022

  18. Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison. Environ Sci Technol 44:9405–9412. https://doi.org/10.1021/es102362t

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Senesi N, Schnitzer M (1977) Information Provided on Humic Substances by E4/E Ratios. Soil Sci Soc Am J 41. https://doi.org/10.2136/sssaj1977.03615995004100020037x

  20. Morais DD, Dalmagro HJ, Pinto Junior OB, Musis CR, Couto EG, Johnson MS (2017) Seasonal variation of dissolved organic carbon (DOC) and optical properties of organic matter in different pasture and soybean systems in the State of Mato Grosso. Ciência e Natura 39(3):758–766. https://doi.org/10.5902/2179460X27649

    Article  Google Scholar 

  21. Nadi M, Sedaghati E, Füleky G (2012) Characterization of organic matter content of hungarian agricultural soils. Acta Agron Hung 60(4):357–366. https://doi.org/10.1556/AAgr.60.2012.4.6

    Article  CAS  Google Scholar 

  22. Guo M, Chorover J (2003) Transport and fractionation of dissolved organic matter in soil columns. Soil Sci 168(2):108–118. https://doi.org/10.1097/00010694-200302000-00005

    Article  CAS  Google Scholar 

  23. Wang Q, Pang W, Ge S, Yu H, Dai C, Huang X, Li J, Zhao M (2020) Characteristics of Fluorescence Spectra, UV Spectra, and Specific Growth Rates during the Outbreak of Toxic Microcystis Aeruginosa FACHB-905 and Non-Toxic FACHB-469 under Different Nutrient Conditions in a Eutrophic Microcosmic Simulation Device. Water 12(8):2305. https://doi.org/10.3390/w12082305

    Article  CAS  Google Scholar 

  24. Niloy NM, Haque MM, Tareq SM (2021) Characterization of dissolved organic matter at urban and industrial rainwater of Bangladesh by fluorescence spectroscopy and EEM-PARAFAC modeling. Environmental Challenges 5:100250. https://doi.org/10.1016/j.envc.2021.100250

    Article  CAS  Google Scholar 

  25. Spencer RGM, Butler KD, Aiken GR (2012) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res 117:G03001. https://doi.org/10.1029/2011JG001928

    CAS  Google Scholar 

  26. Gabor RS, Baker A, McKnight DM, Miller MP (2014) Fluorescence Indices and Their Interpretation. UCL Cambridge University Press 303-338. https://doi.org/10.1017/CBO9781139045452.015

  27. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48. https://doi.org/10.4319/lo.2001.46.1.0038

    Article  CAS  Google Scholar 

  28. Xq Q, Yao B, Jin L, Xz Z, Ma J, Benedetti MF, Li Y, Ren ZI (2020) Characterizing Soil Dissolved Organic Matter in Typical Soils from China Using Fluorescence EEM–PARAFAC and UV–Visible Absorption. Aquat Geochem 26:71–88. https://doi.org/10.1007/s10498-019-09366-7

    Article  Google Scholar 

  29. Gao J, Liang C, Shen G, Lv J, Wu H (2017) Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere 176:108–116. https://doi.org/10.1016/j.chemosphere.2017.02.104

    Article  CAS  PubMed  Google Scholar 

  30. Vacher L (2004) Étude par fluorescence des propriétés de la matière organique dissoute dans les systèmes estuariens. Cas des estuaires de la Gironde et de la Seine. PhD thesis, Université Bordeaux 1

  31. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40(6):706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  CAS  Google Scholar 

  32. Han Z, Xiao M, Yue F, Yi Y, Mostofa KMG (2021) Seasonal Variations of Dissolved Organic Matter by Fluorescent Analysis in a Typical River Catchment in Northern China. Water 13:494. https://doi.org/10.3390/w13040494

    Article  CAS  Google Scholar 

  33. Spencer RGM, Bolton L, Baker A (2007) Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res 41(13):2941–2950. https://doi.org/10.1016/j.watres.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  34. Baker A (2001) Fluorescence Excitation-Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environ Sci Technol 35:948–953. https://doi.org/10.1021/es000177t

    Article  CAS  PubMed  Google Scholar 

  35. Minero C, Lauri V, Falletti G, Maurino V, Pelizzetti E, Vione D (2007) Spectrophotometric characterization of surface lakewater samples: Implications for the quantification of nitrate and the properties of dissolved organic matter. Ann Di Chem 97:1007–1116. https://doi.org/10.1002/adic.200790094

    Google Scholar 

  36. Weber J (2020) definition of soil organic matter. In : Humintech https://www.humintech.com/fileadmin/content_images/agriculture/information/articles_pdf/DEFINITION_OF_SOIL_ORGANIC_MATTER.pdf. Accessed 13 July 2022

  37. Schnitzer M (1967) Humic-fulvic acid relataionships in organic soils and humification of the organic matter in these soils. Can J Soil Sci 47(3):245–250. https://doi.org/10.4141/cjss67-038

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the Moroccan CNRST (Centre National pour la Recherche Scientifique et Technique) [URL-CNRST N°7].

Author information

Authors and Affiliations

Authors

Contributions

Hassan Ba-Haddaou: (Experimental investigations, first draft preparation and submission). Hicham Hassoun: (Sampling, material preparation and experimental investigations). Salim Foudeil: (Data collection, first draft preparation and submission). Abdelmajid El Bakkali : (Manuscript revision and figures preparation). Saadia Ait Lyazidi: (Supervision, methodology, final draft reviewing and project administration). Mustapha Haddad: (Discussion, validation and funding acquisition). Matthieu Masson: (Discussion and validation). Marina Coquery: (Discussion and validation). Christelle Margoum: (Experimental logistics, discussion and validation). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saadia Ait Lyazidi.

Ethics declarations

Ethics Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Participate

All authors consent to participate in the research.

Consent for Publication

All authors consent to participate in the publication of the research.

Conflicts of Interest/Competing Interests

The authors declare they have no conflicts of interest and no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba-Haddou, H., Hassoun, H., Foudeil, S. et al. Combination of 3D Fluorescence/PARAFAC and UV–Vis Absorption for the Characterization of Agricultural Soils from Morocco. J Fluoresc 32, 2141–2149 (2022). https://doi.org/10.1007/s10895-022-03011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03011-3

Keywords

Navigation