Skip to main content
Log in

Indicators for assessment of soil quality: a mini-review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil quality is the competence of soil to perform necessary functions that are able to maintain animal and plant productivity of the soil. Soil consists of various physical, chemical, and biological parameters, and all these parameters are involved in the critical functioning of soil. There is a need for continuous assessment of soil quality as soil is a complex and dynamic constituent of Earth’s biosphere that is continuously changing by natural and anthropogenic disturbances. Any perturbations in the soil cause disturbances in the physical (soil texture, bulk density, etc.), chemical (pH, salinity, organic carbon, etc.), and biological (microbes and enzymes) parameters. These physical, chemical, and biological parameters can serve as indicators for soil quality assessment. However, soil quality assessment cannot be possible by evaluating only one parameter out of physical, chemical, or biological. So, there is an emergent need to establish a minimum dataset (MDS) which shall include physical, chemical, and biological parameters to assess the quality of the given soil. This review attempts to describe various physical, chemical, and biological parameters, combinations of which can be used in the establishment of MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraham, J. S., Sripoorna, S., Dagar, J., Jangra, S., Kumar, A., Yadav, K., Singh, S., Goyal, A., Maurya, S., Gambhir, G., Toteja, R., Gupta, R., Singh, D. K., El-Serehy, H. A., Al-Misned, F. A., Al-Farraj, S. A., Al-Rasheid, K. A., Maodaa, S. A., & Makhija, S. (2019). Soil ciliates of the Indian Delhi Region: their community characteristics with emphasis on their ecological implications as sensitive bio-indicators for soil quality. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2019.04.03.

  • Acosta-Martinez, V., Zobeck, T. M., Gill, T. E., & Kennedy, A. C. (2003). Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-003-0626-1.

  • Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. Journal of Soil Science Plant Nutrition. https://doi.org/10.4067/S0718-95162017000300018.

    Book  Google Scholar 

  • Adetunji, A. T., Ncube, B., Mulidzi, R., & Lewu, F. B. (2020). Potential use of soil enzymes as soil quality indicators in agriculture. In S. K. Nayak & B. B. Mishra (Eds.), Frontiers in soil and environmental microbiology (pp. 57–64). Florida: CRC Press LLC..

    Chapter  Google Scholar 

  • Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evolutionary Bioinformatics. https://doi.org/10.4137/EBO.S36436.

  • Ali, J., Sharma, D. C., Bano, A., Gupta, A., Sharma, S., Bajpai, P., & Pathak, N. (2019). Exploiting microbial enzymes for augmenting crop production. In M. Kuddus (Ed.), Food biotechnology – production, application and future prospects (pp. 503–519). London: Elsevier.

    Google Scholar 

  • Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., & Garbisu, C. (2003). Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health. https://doi.org/10.1515/REVEH.2003.18.1.65.

  • Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil bulk density estimation methods: A review. Pedosphere. https://doi.org/10.1016/S1002-0160(18)60034-7.

  • Alvarez-Yela, A. C., Alvarez-Silva, M. C., Restrepo, S., Husserl, J., Zambrano, M. M., Danies, G., Gomez, J. M., & Barrios, A. F. G. (2017). Influence of agricultural activities in the structure and metabolic functionality of paramo soil samples in Colombia studied using a metagenomics analysis in dynamic state. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2017.02.010.

  • Anikwe, M. A. N. (2006). Soil quality assessment and monitoring: a review of current research efforts. Enugu: New Generation Books.

    Google Scholar 

  • Antonious, G. F. (2003). Impact of soil management and two botanical insecticides on urease and invertase activity. Journal of Environmental Science and Health. https://doi.org/10.1081/PFC-120021667.

  • Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., & Ball, A. S. (2005) Soil health: a new challenge for microbiologists and chemists. International Microbiology, http://hdl.handle.net/10261/2130

  • Arshad, M. A., Lowery, B., & Grossman, B. (1996). Physical tests for monitoring soil quality. In J. W. Doran & A. J. Jones (Eds.), Methods for Assessing Soil Quality (pp. 123–141). Madison: SSSA publications.

    Google Scholar 

  • Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/S0167-8809(01)00252-3.

  • Ataikiru, T. L., Okpokwasili, G. S. C., & Okerentugba, P. O. (2019). Impact of pesticides on microbial diversity and enzymes in soil. South Asian Journal of Research in Microbiology. https://doi.org/10.9734/sajrm/2019/v4i230104.

  • Baath, E., & Anderson, T. H. (2003). Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(03)00154-8.

  • Bach, E. M., Baer, S. G., Meyer, C. K., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2010.08.014.

  • Bakshi, M., & Varma, A. (2011). Soil enzymes: the state-of-art. In S. Shukla & A. Varma (Eds.), Soil Enzymology (pp. 1–23). New York: Springer.

    Google Scholar 

  • Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(99)00051-6.

  • Baran, S., Bielinska, J. E., & Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma. https://doi.org/10.1016/S0016-7061(03)00205-2.

  • Barragan, C., Wetzel, C. E., & Ector, L. (2018). A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment. Journal of Applied Phycology. https://doi.org/10.1007/s10811-017-1336-7.

  • Bashri, G., Patel, A., Singh, R., Parihar, P., & Prasad, S. M. (2017). Mineral solubilization by microorganisms: mitigating strategy in mineral deficient soil. In J. K. Patra, C. N. Vishnuprasad, & G. Das (Eds.), Microbial Biotechnology (pp. 265–285). Singapore: Springer.

    Chapter  Google Scholar 

  • Bastida, F., Jehmlich, N., Martinez-Navarro, J., Bayona, V., Garcia, C., & Moreno, J. L. (2019). The effects of struvite and sewage sludge on plant yield and the microbial community of a semiarid Mediterranean soil. Geoderma. https://doi.org/10.1016/j.geoderma.2018.10.046.

  • Bastida, F., Torres, I. F., Hernandez, T., & Garcia, C. (2017). The impacts of organic amendments: do they confer stability against drought on the soil microbial community? Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2017.06.012.

  • Bastida, F., Zsolnay, A., Hernández, T., & Garcia, C. (2008). Past, present and future of soil quality indices: a biological perspective. Geoderma. https://doi.org/10.1016/j.geoderma.2008.08.007.

  • Bathurst, R. R., Zori, D., & Byock, J. (2010). Diatoms as bioindicators of site use: locating turf structures from the Viking Age. Journal of Archaeological Science. https://doi.org/10.1016/j.jas.2010.07.002.

  • Berger, H. (1985). Morphological variation and comparative analysis of morphogenesis in Parakahliella macrostoma (Foissner, 1982) nov. gen. and Histriculus muscorum (Kahl, 1932), (Ciliophora, Hypotrichida). Protistologica, 21, 295–311.

    Google Scholar 

  • Bilen, S., Islam, K. R., Bilen, M., & Ozgul, M. (2018). Effects of soil tillage on soil properties. Proceedings of International Agricultural Biological & Life Science Conference, 624–514.

  • Bloem, J., Lebbink, G., Zwart, K. B., Bouwman, L. A., Burgers, S. L. G. E., de Vos, J. A., & de Ruiter, P. C. (1994). Dynamics of microorganisms, microbivores and nitrogen mineralisation in winter wheat fields under conventional and integrated management. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/0167-8809(94)90039-6.

  • Bowers, N., Pratt, J. R., Beeson, D., & Lewis, M. (1997). Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.5620160216.

  • Brkljaca, M., Kulisic, K., & Andersen, B. (2019). Soil dehydrogenase activity and organic carbon as affected by management system. Agriculturae Conspectus Scientificus, 84(2), 135–142.

    Google Scholar 

  • Bunemann, E. K., Bongiorno, G., Baic, Z., Creamerb, R. E., Deynb, G. D., Goedeb, R. D., Fleskensd, L., Geissend, V., Kuyperb, T. W., Madera, P., Pullemanb, M., Sukkelf, W., Groenigenb, J. W. V., & Brussaard, L. (2018). Soil quality – a critical review. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2018.01.030.

  • Campbell, C. D., Warren, A., Cameron, C. M., & Hope, S. J. (1997). Direct toxicity assessment of two soils amended with sewage sludge contaminated with heavy metals using a protozoan (Colpoda steinii) bioassay. Chemosphere. https://doi.org/10.1016/S0045-6535(96)00389-X.

  • Campos, J. A., Peco, J. D., De Toro, J. A., Moreno, C., Amoros, J. A., Moreno, M. M., Gracia-Noguero, E. M., & Higueras, P. (2018). Approach to the potential usage of two wood ashes waste as soil amendments on the basis of dehydrogenase activity and soil oxygen consumption. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-017-1840-z.

  • Cao, Y., Ma, C., Chen, H., Chen, G., White, J. C., & Xing, B. (2020). Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135350.

  • Carvalhais, L. C., Dennis, P. G., Tyson, G. W., & Schenk, P. M. (2012). Application of metatranscriptomics to soil environments. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2012.08.011.

  • Casanova, M., Tapia, E., Seguel, O., & Salazar, O. (2016). Direct measurement and prediction of bulk density on alluvial soils of central Chile. Chilean Journal of Agricultural Research. https://doi.org/10.4067/S0718-58392016000100015.

  • Chang, Y. J., Hussain, A. A., Stephen, J. R., Mullen, M. D., White, D. C., & Peacock, A. (2001). Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia-oxidizer communities in soil microcosms. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.5620201110.

  • Chau, J. F., Bagtzoglou, A. C., & Willig, M. R. (2011). The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics. https://doi.org/10.1080/15275922.2011.622348.

  • Chavez-Romero, Y., Navarro-Noya, Y. E., Reynoso-Martínez, S. C., Sarria-Guzman, Y., Govaerts, B., Verhulst, N., Dendooven, L., & Luna-Guido, M. (2016). 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil and Tillage Research. https://doi.org/10.1016/j.still.2016.01.007.

  • Chen, H., Liang, Q., Gong, Y., Kuzyakov, Y., Fan, M., & Plante, A. F. (2019). Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil and Tillage Research. https://doi.org/10.1016/j.still.2019.104296.

  • Chiapello, M., Zampieri, E., & Mello, A. (2020). A small effort for researchers, a big gain for soil metaproteomics. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.00088.

  • Chodak, M., & Niklinska, M. (2010). Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2010.08.002.

  • Chowdhury, T. R., Lee, J. Y., Bottos, E. M., Brislawn, C. J., White, R. A., Bramer, L. M., Brown, J., Zucker, J. D., Kim, Y. M., Jumpponen, A., Rice, C. W., Fansler, S. J., Metz, T. O., McCue, L. A., Callister, S. J., Song, H. S., & Jansson, J. K. (2019). Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems. https://doi.org/10.1128/mSystems.00061-19.

  • Couteaux, M. M. (1985). Relation between the apparent density of humus and the ability of Ciliates to grow. Pedobiologia, 28(5), 289–303.

    Google Scholar 

  • Cowling, A. J. (1994). Protozoa distribution and adaptation. In J. F. Darbyshire (Ed.), Soil protozoa (pp. 5–42). London: CAB International.

    Google Scholar 

  • Creevy, A. L., Andersen, R., Rowson, J. G., & Payne, R. J. (2018). Testate amoebae as functionally significant bioindicators in forest-to-bog restoration. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.08.062.

  • Daniel, R. (2005). The metagenomics of soil. Nature Reviews. Microbiology. https://doi.org/10.1038/nrmicro1160.

  • Das, S. K., & Varma, A. (2011). Soil enzymes: the state-of-art. In S. Shukla & A. Varma (Eds.), Soil Enzymology (pp. 25–42). New York: Springer.

    Google Scholar 

  • de Menezes, A., Clipson, N., & Doyle, E. (2012). Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environmental Microbiology. https://doi.org/10.1111/j.1462-2920.2012.02781.x.

  • de Souza Silva, C. M. M., & Fay, E. F. (2012). Effect of salinity on soil microorganisms. In M. C. Hernandez-Soriano (Ed.), Soil Health and Land Use Management (pp. 177–198). Croatia: Intech.

    Google Scholar 

  • Diaz, S., Martin-Gonzalez, A., & Gutierrez, J. C. (2006). Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International. https://doi.org/10.1016/j.envint.2006.03.004.

  • Ding, J., Jiang, X., Guan, D., Zhao, B., Ma, M., Zhou, B., Cao, F., Yang, X., Li, L., & Li, J. (2017). Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2016.12.003.

  • Dong, Q., Cheng, X., Zhang, S., Bai, C., Wu, D., Liu, X., Sun, Z., Song, Q., Shi, Q., Liu, Y., & Han, X. (2019). Effects of different mechanized organic fertilization methods on soil enzymes activities in a corn field. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/233/4/042008.

    Book  Google Scholar 

  • Donkova, R., & Kaloyanova, N. (2008). The impact of soil pollutants on soil microbial acivity. In L. Simeonov & V. Sargsyan (Eds.), Soil Chemical Pollution, Risk Assessment, Remediation and Security (pp. 73–93). Netherlands: Springer.

    Chapter  Google Scholar 

  • Doolette, A. L., & Smernik, R. J. (2011). Soil organic phosphorus speciation using spectroscopic techniques. In E. Bunemann, A. Oberson, & E. Frossard (Eds.), Phosphorus in action (pp. 3–36). Germany: Springer.

    Chapter  Google Scholar 

  • Fernandez, R., Frasier, I., Quiroga, A., & Noellemeyer, E. (2019). Pore morphology reveals interaction of biological and physical processes for structure formation in soils of the semiarid Argentinean Pampa. Soil and Tillage Research. https://doi.org/10.1016/j.still.2019.04.011.

  • Filipovic, L., Romic, M., Sikora, S., Babic, K. H., Filipovic, V., Gerke, H. H., & Romic, D. (2020). Response of soil dehydrogenase activity to salinity and cadmium species. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-019-00140-w.

  • Filippelli, G. M. (2017). The global phosphorus cycle. In R. Lal & B. A. Stewart (Eds.), Soil Phosphorus (pp. 1–21). Boca Raton: CRC Press.

    Google Scholar 

  • Foissner, W. (1988). Gemeinsame Arten in der terricolen Ciliatenfauna (Protozoa: Ciliophora) von Australien und Afrika. Stapfia, 17, 85–133.

    Google Scholar 

  • Foissner, W. (1994). Morphology and morphogenesis of Circinella arenicola nov. gen., nov. spec., a cephalized hypotrich (Ciliophora, Hypotrichida) from sand dunes in Utah, USA. European Journal of Protistology. https://doi.org/10.1016/S0932-4739(11)80026-X.

  • Foissner, W. (1997a). Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodiversity and Conservation. https://doi.org/10.1023/A:1018378822687.

  • Foissner, W. (1997b). Soil ciliates (Protozoa: Ciliophora) from evergreen rain forests of Australia, South America and Costa Rica: diversity and description of new species. Biology and Fertility of Soils. https://doi.org/10.1007/s003740050322.

  • Foissner, W. (1998). An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. European Journal of Protistology, 34(2), 195–235.

  • Foissner, W. (1999). Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. In M. G. Paoletti (Ed.), Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (pp. 95–112). Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Foissner, W., Agatha, S., & Berger, H. (2002). Soil ciliates (Protozoa, Ciliphora) from Nambia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and Namib Desert. Denisia, 5, 1–1468.

    Google Scholar 

  • Forge, T. A., Berrow, M. L., Darbyshire, J. F., & Warren, A. (1993). Protozoan bioassays of soil amended with sewage sludge and heavy metals, using the common soil ciliate Colpoda steinii. Biology and Fertility of Soils. https://doi.org/10.1007/BF00369305.

  • Forge, T. A., Bittman, S., & Kowalenko, C. G. (2005). Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2004.11.013.

  • Fournier, B., Malysheva, E., Mazei, Y., Moretti, M., & Mitchell, E. A. D. (2012). Toward the use of testate amoeba functional traits as indicator of floodplain restoration success. European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2011.05.008.

  • Frac, M., Hannula, S. E., Bełka, M., & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00707.

  • Gabilondo, R., Blanco, S., Fernandez-Montiel, I., Garcia, D. A., & Becares, E. (2018). Ciliates as bioindicators of CO2 in soil. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.11.060.

  • Gao, D., Wang, F., Li, J., Yu, S., Li, Z., & Zhao, J. (2019). Soil nematode communities as indicators of soil health in different land use types in tropical area. Nematology. https://doi.org/10.1163/15685411-00003325.

  • Geisen, S., Cornelia, B., Jorg, R., & Michael, B. (2014). Soil water availability strongly alters the community composition of soil protists. Pedobiologia. https://doi.org/10.1016/j.pedobi.2014.10.001.

  • Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernandez, L. D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuy006.

  • Geisen, S., Tveit, A. T., Clark, I. M., Richter, A., Svenning, M. M., Bonkowski, M., & Urich, T. (2015). Metatranscriptomic census of active protists in soils. The ISME Journal. https://doi.org/10.1038/ismej.2015.30.

  • Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms - a review. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2014.03.023.

  • Gianfreda, L., & Rao, M. A. (2019). Soil enzyme activities for soil quality assessment. In J. C. Sanchez-Hernandez (Ed.), Bioremediation of Agricultural Soils (pp. 239–261). Florida: CRC Press LLC..

    Chapter  Google Scholar 

  • Goel, R., Suyal, D. C., & Narayan., Dash, B., & Soni, R. (2017). Soil metagenomics: a tool for sustainable agriculture. In V. C. Kalia, Y. Shouche, H. J. Purohit, & P. Rahi (Eds.), Mining of microbial wealth and metagenomics (pp. 217–225). Singapore: Springer.

    Chapter  Google Scholar 

  • Gomes, G. S., Huang, S. P., & Cares, J. E. (2003). Nematode community, trophic structure and population fluctuation in soybean fields. Fitopatologia Brasileira. https://doi.org/10.1590/S0100-41582003000300006.

  • Gorovtsov, A., Minkina, T. M., Morin, T., Zamulina, I. V., Mandzhieva, S. S., Sushkova, S. N., & Rajput, V. (2018). Ecological evaluation of polymetallic soil quality: the applicability of culture-dependent methods of bacterial communities studying. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-018-2019-y.

  • Govaerts, B., Sayre, K. D., & Deckers, J. (2006). A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and Tillage Research. https://doi.org/10.1016/j.still.2005.03.005.

  • Graber, E. R., Singh, B., Hanley, K., & Lehmann, J. (2017). Determination of cation exchange capacity in biochar. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to Analytical Methods (pp. 74–84). Boca Raton: CRC Press LLC..

    Google Scholar 

  • Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., & Xiangping, W. (2017). Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2017.01.004.

  • Gunal, E., Erdem, H., & Demirbas, A. (2018). Effects of three biochar types on activity of β-glucosidase enzymes in two agricultural soils of different textures. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2018.1471205.

  • Gunjal, A. B., Waghmode, M. S., Patil, N. N., & Nawani, N. N. (2019). Significance of soil enzymes in agriculture. In P. Bhatt (Ed.), Smart Bioremediation Technologies: Microbial Enzymes (pp. 159–168). London: Elsevier.

    Chapter  Google Scholar 

  • Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H. H., Blake, R. E., Doni, S., & Ceccanti, B. (2012). Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere. https://doi.org/10.1016/j.chemosphere.2012.01.034.

  • Guo, S. H., Hu, N., Li, Q. S., Yang, P., Wang, L. L., Xu, Z. M., Chen, H. J., He, B. Y., & Zeng, E. Y. (2018). Response of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: a metabolomic analysis. Environmental Pollution. https://doi.org/10.1016/j.envpol.2018.05.018.

  • Gupta, V. V. S. R., & Germida, J. J. (1988). Populations of predatory protozoa in field soils after 5 years of elemental S fertilizer application. Soil Biology and Biochemistry. https://doi.org/10.1016/0038-0717(88)90083-1.

  • Gutierrez, C., Fernandez, C., Escuer, M., Campos-Herrera, R., Rodriguez, M. E. B., Carbonell, G., & Martin, J. A. R. (2016). Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.02.012.

  • Haddad, S. A., Lemanowicz, J., & El-Azeim, M. M. A. (2019). Cellulose decomposition in clay and sandy soils contaminated with heavy metals. International journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1918-1.

  • Han, J., Zhang, C., Cheng, J., Wang, F., & Qiu, L. (2019). Effects of biogas residues containing antibiotics on soil enzyme activity and lettuce growth. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-4046-z.

  • Harris, J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? Science. https://doi.org/10.1126/science.1172975.

  • Hassink, J. (1994). Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils. Soil Biology and Biochemistry. https://doi.org/10.1016/0038-0717(94)90100-7.

  • Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annales de Microbiologie. https://doi.org/10.1007/s13213-010-0117-1.

  • Hayden, H. L., Rochfort, S. J., Ezernieks, V., Savin, K. W., & Mele, P. M. (2019). Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.09.249.

  • Hayden, H. L., Savin, K. W., Wadeson, J., Gupta, V. V. S. R., & Mele, P. M. (2018). Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00859.

  • Heger, T. J., Straub, F., & Mitchell, E. A. D. (2012). Impact of farming practices on soil diatoms and testate amoebae: a pilot study in the DOK-trial at Therwil. Switzerland European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2011.08.007.

  • Holik, L., Hlisnikovsky, L., Honzik, R., Trogl, J., Burdova, H., & Popelka, J. (2019). Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability. https://doi.org/10.3390/su11123251.

  • Hossain, M. Z., Karim, M. R., Majumder, B. R., & Akter, F. (2019). Microbial and enzymatic activity as influenced by existing cropping pattern in the soils of Ganges floodplain. Plant Science Today. https://doi.org/10.14719/pst.2019.6.3.545.

  • Hui, N., Liu, X., Jumpponen, A., Setala, H., Kotze, D. J., Biktasheva, L., & Romantschuk, M. (2018). Over twenty years farmland reforestation decreases fungal diversity of soils, but stimulates the return of ectomycorrhizal fungal communities. Plant and Soil. https://doi.org/10.1007/s11104-018-3647-0.

  • Ikoyi, I., Fowler, A., Storey, S., Doyle, E., & Schmalenberger, A. (2020). Sulfate fertilization supports growth of ryegrass in soil columns but changes microbial community structures and reduces abundances of nematodes and arbuscular mycorrhiza. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135315.

  • Jaiswal, D. K., Verma, J. P., Prakash, S., Meena, V. S., & Meena, R. S. (2016). Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 21–29). India: Springer.

    Chapter  Google Scholar 

  • Jansson, J. K., & Baker, E. S. (2016). A multi-omic future for microbiome studies. Nature Microbiology. https://doi.org/10.1038/nmicrobiol.2016.49.

  • Jansson, J. K., & Hofmockel, K. S. (2018). The soil microbiome - from metagenomics to metaphenomics. Current Opinion in Microbiology. https://doi.org/10.1016/j.mib.2018.01.013.

  • Johnston, E. R., Kim, M., Hatt, J. K., Phillips, J. R., Yao, Q., Song, Y., Hazen, T. C., Mayes, M. A., & Konstantinidis, K. T. (2019). Phosphate addition increases tropical forest soil respiration primarily by deconstraining microbial population growth. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2018.11.026.

  • Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., Krogh, P. H., Nahmani, J., Peres, G., Vergnes, A., & Cortet, J. (2017). Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Sci Total Environ. https://doi.org/10.1016/jscitotenv.2017.01.086.

  • Jones, O. A. H., Sdepanian, S., Lofts, S., Svendsen, C., Spurgeon, D. J., Maguire, M. L., & Griffin, J. L. (2014). Metabolomic analysis of soil communities can be used for pollution assessment. Environmental Toxicology and Chemistry. https://doi.org/10.1002/etc.2418.

  • Jonsson, L. M., Nilsson, M. C., Wardle, D. A., & Zackrisson, O. (2001). Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos. https://doi.org/10.1034/j.1600-0706.2001.930301.x.

  • Jordan, H. V., & Reisenauer, H. M. (1957). Sulfur and soil fertility. In Soil (Ed.), Year Book of Agriculture (pp. 107–110). Washington: U.S.D.A.

    Google Scholar 

  • Juhos, K., Czigany, S., Madarasz, B., & Ladanyi, M. (2019). Interpretation of soil quality indicators for land suitability assessment–a multivariate approach for Central European arable soils. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.063.

  • Kaczynski, P., Lozowicka, B., Hrynko, I., & Wolejko, E. (2016). Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.07.100.

  • Kahlert, M., & Rasic, I. S. (2015). Similar small-scale variation of diatom assemblages on different substrates in a mesotrophic stream. Acta Botanica Croatica. https://doi.org/10.1515/botcro-2015-0021.

  • Karaca, A., Cetin, S. C., Turgay, O. C., & Kizilkaya, R. (2011). Soil enzymes as indication of soil quality. In G. Shukhla & A. Varma (Eds.), Soil Enzymology (pp. 119–148). New York: Springer.

    Google Scholar 

  • Kelly, M. G., Gennion, H., Cox, E. J., Goldmith, B., Jamieson, J., Juggins, S., Mann, D. G., & Telford, R. J. (2005). Common freshwater diatoms of Britain and Ireland: an interactive key. Bristol: Environment Agency http://craticula.ncl.ac.uk/EADiatomKey/html/taxa.html.

    Google Scholar 

  • Kertesz, M. A., & Mirleau, P. (2004). The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erh176.

  • Khaledian, Y., Brevik, E. C., Pereira, P., Cerda, A., Fattah, M. A., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena. https://doi.org/10.1016/j.catena.2017.07.002.

  • Khan, N. A., Khan, M. I. R., Asgher, M., Fatma, M., Masood, A., & Syeed, S. (2014). Salinity tolerance in plants: revisiting the role of sulfur metabolites. Journal of Plant Biochemistry and Physiology. https://doi.org/10.4172/2329-9029.1000120.

  • Khati, P., Sharma, A., Gangola, S., Kumar, R., Bhatt, P., & Kumar, G. (2017). Impact of agri-usable nanocompounds on soil microbial activity: an indicator of soil health. Clean: Soil, Air, Water. https://doi.org/10.1002/clen.201600458.

  • Kleiner, M. (2019). Metaproteomics: much more than measuring gene expression in microbial communities. mSystems. https://doi.org/10.1128/mSystems.00115-19.

  • Kruse, J. S. (2007). Framework for sustainable soil management: literature review and synthesis. Soil and Water Conservation Society, Ankeny.

  • Kumar, M., Kumar, P., Das, P., & Kapur, M. K. (2019). Draft genome of Streptomyces sp. strain 130 and functional analysis of extracellular enzyme producing genes. Molecular Biology Reports. https://doi.org/10.1007/s11033-019-04960-y.

  • Kunito, T., Saeki, K., Goto, S., Hayashi, H., Oyaizu, H., & Matsumoto, S. (2001). Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresource Technology. https://doi.org/10.1016/S0960-8524(01)00047-5.

  • Lammel, D. R., Meierhofer, D., Johnston, P., Mbedi, S., & Rillig, M. C. (2019). The effects of arbuscular mycorrhizal fungi (AMF) and Rhizophagus irregularis on soil microorganisms assessed by metatranscriptomics and metaproteomics. bioRxiv. https://doi.org/10.1101/860932.

  • Landi, S., d'Errico, G., Simoncini, S., L'Abate, G., & Priori, S. (2018). Nematode coomunities as indicators of soil quality in vineyard system: a case of study in degraded areas. EQA - International Journal of Environmental Quality. https://doi.org/10.6092/issn.2281-4485/7892.

  • Lara, E., & Acosta-Mercado, D. (2012). A molecular perspective on ciliates as soil bioindicators. European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2011.11.001.

  • Lema, B., Mesfin, S., Kebede, F., Abraha, Z., Fitiwy, I., & Haileselassie, H. (2019). Evaluation of soil physical properties of long-used cultivated lands as a deriving indicator of soil degradation, north Ethopia. Physical Geography. https://doi.org/10.1080/02723646.2019.1568148.

  • Lemanowicz, J., Siwik-Ziomek, A., & Koper, J. (2019). Enzymatic variation of soils exposed to the impact of the soda plant in terms of biochemical parameters. International journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1959-5.

  • Li, C. H., Ma, B. L., & Zhang, T. Q. (2002). Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian Journal of Soil Science. https://doi.org/10.4141/S01-026.

  • Li, J., Li, M. G., Yang, J., Ai, Y., & Xu, R. L. (2010). Community characteristics of soil ciliates at Baiyun Mountain, Guangzhou, China. Zoological Studies, 49(6), 713–723.

    CAS  Google Scholar 

  • Li, P., Shi, K., Wang, Y., Kong, D., Liu, T., Jiao, J., Liu, M., Li, H., & Hu, F. (2019a). Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil and Tillage Research. https://doi.org/10.1016/j.still.2019.02.019.

  • Li, Y., Tremblay, J., Bainard, L. D., Cade-Menun, B., & Hamel, C. (2019b). Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14824.

  • Li, X., Han, S., Luo, X., Chen, W., & Huang, Q. (2020). Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-019-02421-4.

  • Liang, X., Jin, Y., He, M., Liu, Y., Hua, G., Wang, S., & Tian, G. (2017). Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2016.12.033.

  • Liao, Y., Min, X., Yang, Z., Chai, L., Zhang, S., & Wang, Y. (2014). Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-013-1919-z.

  • Liu, D., Keiblinger, K. M., Leitner, S., Wegner, U., Zimmermann, M., Fuchs, S., Lassek, C., Reidel, K., & Zechmeister-Boltenstern, S. (2019). Response of microbial communities and their metabolic functions to drying–rewetting stress in a temperate forest soil. Microorganisms. https://doi.org/10.3390/microorganisms7050129.

  • Liu, Y., Fan, X., Zhang, T., He, W., & Song, F. (2020). Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114264.

  • Liu, Z., Fu, B., Zheng, X., & Liu, G. (2010). Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2009.11.027.

  • Liu, Z. P., Shao, M. A., & Wang, Y. Q. (2013). Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma. https://doi.org/10.1016/j.geoderma.2012.12.011.

  • Loka, D. A., Oosterhuis, D. M., Baxevanos, D., Vlachostergios, D., & Hu, W. (2018). How potassium deficiency alters flower bud retention on cotton (Gossypium hirsutum L.). Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2018.1511894.

  • Lors, C., Damidot, D., Ponge, J. F., & Perie, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution. https://doi.org/10.1016/j.envpol.2012.02.004.

  • Lors, C., Ryngaert, A., Perie, F., Diels, L., & Damidot, D. (2010). Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.09.021.

  • Luftenegger, G., Foissner, W., & Adam, H. (1985). R-and k-selection in soil ciliates: a field and experimental approach. Oecologia. https://doi.org/10.1007/BF00379352.

  • Macrii, L., Melnic, R., Cojocaru, O., & Popa, O. (2019). The cellulolytic activity depending on soil tillage and influence of forest strip under winter wheat agrocoenoses. Scientific Papers. Series A. Agronomy, 62(1), 63–68.

  • Makoi, J. H. J. R., & Ndakidemi, P. A. (2008). Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7(3), 181–191.

    CAS  Google Scholar 

  • Mann, D. G., & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. In J. Kristiansen (Ed.), Biogeography of freshwater algae (pp. 19–32). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Martin, M. A., Reyes, M., & Taguas, F. J. (2017). Estimating soil bulk density with information metrics of soil texture. Geoderma. https://doi.org/10.1016/j.geoderma.2016.09.008.

  • Masuda, Y., Matsumoto, T., Isobe, K., & Senoo, K. (2019). Denitrification in paddy soil as a cooperative process of different nitrogen oxide reducers, revealed by metatranscriptomic analysis of denitrification-induced soil microcosm. Soil Science & Plant Nutrition. https://doi.org/10.1080/00380768.2019.1622401.

  • Mattarozzi, M., Di Zinno, J., Montanini, B., Manfredi, M., Marengo, E., Fornasier, F., Ferrarini, A., & Visioli, G. (2020). Biostimulants applied to maize seeds modulate the enzymatic activity and metaproteome of the rhizosphere. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2019.103480.

  • Mc Lean, E. O. (1983). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of Soil Analysis (pp. 199–224). Madison: American Society of Agronomy, Inc..

    Google Scholar 

  • McGee, C. F., Storey, S., Clipson, N., & Doyle, E. (2017). Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. https://doi.org/10.1007/s10646-017-1776-5.

  • Medlin, L. K. (2009). Diatoms (Bacillariophyta). In S. B. Hedges & S. Kumar (Eds.), The Timetree of Life (pp. 127–130). Oxford: Oxford University Press.

    Google Scholar 

  • Mirinn, E., Berezi, E. P., & Nwauche, K. T. (2020). Effect of drilling wastes on urease activities and substrate induced respiration (SIR) in wetland soil of delta and Bayelsa States, south-south. Nigeria Chemical Science International Journal. https://doi.org/10.9734/CSJI/2020/v29i230162.

  • Mishra, G., Marzaioli, R., Giri, K., & Pandey, S. (2019). Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland. India Journal of Forestry Research. https://doi.org/10.1007/s11676-018-0720-8.

  • Mitchell, E. A. D., Charman, D. J., & Warner, B. G. (2008). Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiversity and Conservation. https://doi.org/10.1007/s10531-007-9221-3.

  • Mndzebele, B., Ncube, B., Fessehazion, M., Mabhaudhi, T., Amoo, S., du Plooy, C., Venter, S., & Modi, A. (2020). Effects of cowpea-amaranth intercropping and fertiliser application on soil phosphatase activities, available soil phosphorus, and crop growth response. Agronomy. https://doi.org/10.3390/agronomy10010079.

  • Mohammadi, K., Heidari, G., Khalesro, S., & Sohrabi, Y. (2011). Soil management, microorganisms and organic matter interactions: a review. African Journal of Biotechnology. https://doi.org/10.5897/AJBX11.006.

  • Mohammed, M. A., Yalwa, T. R., & Yusuf, S. A. (2018). Evaluation of some soil properties on dehydrogenase activity in River Getsi Kano State, Nigeria. Malaysian Journal of Applied Sciences, 3(1), 34–41.

    Google Scholar 

  • Moral, F. J., & Rebollo, F. J. (2017). Characterization of soil fertility using the Rasch model. Journal of Soil Science and Plant Nutrition. https://doi.org/10.4067/S0718-95162017005000035.

  • Moura, G. S., & Franzener, G. (2017). Biodiversity of nematodes biological indicators of soil quality in the agroecosystems. Arquivos do Instituto Biológico. https://doi.org/10.1590/1808-1657000142015.

  • Mukherjee, A., & Reddy, M. S. (2020). Metatranscriptomics: an approach for retrieving novel eukaryotic genes fro polluted and related environments. 3 Biotech. https://doi.org/10.1007/s13205-020-2057-1.

  • Mukherjee, A., Yadav, R., Marmeisse, R., Fraissinet-Tachet, L., & Reddy, M. S. (2019). Heavy metal hypertolerant eukaryotic aldehyde dehydrogenase isolated from metal contaminated soil by metatranscriptomics approach. Biochimie. https://doi.org/10.1016/j.biochi.2019.03.010.

  • Mumtaz, S., Streten, C., Parry, D. L., McGuinness, K. A., Lu, P., & Gibb, K. S. (2018). Soil uranium concentration at ranger uranium mine land application areas drives changes in the bacterial community. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2018.03.003.

  • Munoz-Arenas, L. C., Fusaro, C., Hernandez-Guzman, M., Dendooven, L., Estrada-Torres, A., & Navarro-Noya, Y. E. (2020). Soil microbial diversity drops with land-use change in a high mountain temperate forest: a metagenomics survey. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.12822.

  • Nayak, S. K., Dash, B., Nayak, S., Mohanty, S., & Mishra, B. B. (2020). Chitinase producing soil bacteria: prospects and applications. In S. K. Nayak & B. B. Mishra (Eds.), Frontiers in Soil and Environmental Microbiology (pp. 289–298). Florida: CRC Press LLC..

    Chapter  Google Scholar 

  • Ndossi, E. M., Becker, J. N., Hemp, A., Dippold, M. A., Kuzyakov, Y., & Razavi, B. S. (2020). Effects of land use and elevation on the functional characteristics of soil enzymes at Mt. Kilimanjaro European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2020.103167.

  • Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33(4), 161–168.

    CAS  Google Scholar 

  • Nielsen, M. N., Winding, A., Binnerup, S., Hansen, B. M., Hendriksen, N. B., & Kroer, N. (2002). Microorganisms as indicators of soil health. Technical Report No. 388. Denmark: National Environment Research Institute.

    Google Scholar 

  • Norris, C. E., Quideau, S. A., Landhausser, S. M., Drozdowski, B., Hogg, K. E., & Oh, S. W. (2018). Assessing structural and functional indicators of soil nitrogen availability in reclaimed forest ecosystems using 15N-labelled aspen litter. Canadian Journal of Soil Science. https://doi.org/10.1139/cjss-2018-0021.

  • Nourbakhsh, F., & Monreal, C. M. (2004). Effects of soil properties and trace metals on urease activities of calcareous soils. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-004-0786-7.

  • Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P. E., Johansen, A., Brandt, K. K., Prieme, A., & Sorensen, S. J. (2016). Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiw175.

  • Nyberg, K., Schnurer, A., Sundh, I., Jarvis, A., & Hallin, S. (2006). Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-005-0029-6.

  • Obalum, S. E., Chibuike, G. U., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-5881-y.

  • Oldfield, E. E., Wood, S. A., & Bradford, M. A. (2018). Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant and Soil. https://doi.org/10.1007/s11104-017-3513-5.

  • Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R. T., & Minz, D. (2001). Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.67.8.3426-3433.2001.

  • Pascual, J. A., Moreno, J. L., Hernandez, T., & Garcia, C. (2002). Persistence of immobilised and total urease and phosphatase activities in a soil amended with organic wastes. Bioresource Technology. https://doi.org/10.1016/S0960-8524(01)00127-4.

  • Patel, N., Shah, M., & Gangawane, A. K. (2019). Amylase activity of starch degrading bacteria isolated from soil. International Journal of Current Microbiology and Applied Sciences. https://doi.org/10.20546/ijcmas.2019.804.071.

  • Pen-Mouratov, S., Shukurov, N., & Steinberger, Y. (2008). Influence of industrial heavy metal pollution on soil free-living nematode population. Environmental Pollution. https://doi.org/10.1016/j.envpol.2007.05.007.

  • Petz, W., & Foissner, W. (1989). The effects of mancozeb and lindane on the soil microfauna of a spruce forest: a field study using a completely randomized block design. Biology and Fertility of Soils. https://doi.org/10.1007/BF00709653.

  • Piotrowska, A., & Koper, J. (2010). Soil beta-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. Journal of Elementology, 15(3), 593–600.

    Google Scholar 

  • Pratt, J. R., Mochan, D., & Xu, Z. (1997). Rapid toxicity estimation using soil ciliates: sensitivity and bioavailability. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s001289900346.

  • Qiu, S., Xie, J., Zhao, S., Xu, X., Hou, Y., Wang, X., Zhou, W., He, P., Johnston, A. M., Christei, P., & Jin, J. (2014). Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research. https://doi.org/10.1016/j.fcr.2014.04.016.

  • Rabot, E., Wiesmeier, M., Schluter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma. https://doi.org/10.1016/j,geoderma.2017.11.009.

  • Rahal, N. S., & Alhumairi, B. A. J. (2019). Modelling of soil cation exchange capacity for some soils of east gharaf lands from mid-Mesopotamian plain (Wasit province/Iraq). International journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1913-6.

  • Rao, C. S., & Srinivas, K. (2017). Potassium dynamics and role of non-exchangeable potassium in crop nutrition. Indian Journal of Fertilisers, 13(4), 80–94.

    Google Scholar 

  • Rezaei, S. A., Gilkes, R. J., & Andrews, S. S. (2006). A minimum data set for assessing soil quality in rangelands. Geoderma. https://doi.org/10.1016/j.geoderma.2006.03.021.

  • Rice, C. W., Moorman, T. B., & Beare, M. (1997). Role of microbial biomass carbon and nitrogen in soil quality. In J. W. Doran & A. J. Jones (Eds.), Methods for Assessing Soil Quality (pp. 203–215). Madison: Soil Science Society of America, Inc..

    Google Scholar 

  • Rietz, D. N., & Haynes, R. J. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(03)00125-1.

  • Roco, C. A., Dorsch, P., Booth, J. G., Pepe-Ranney, C., Groffman, P. M., Fahey, T. J., Yavitt, J. B., & Shapleigh, J. P. (2019). Using metagenomics to reveal landscape scale patterns of denitrifiers in a montane forest ecosystem. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2019.107585.

  • Rogerson, A., & Berger, J. (1983). Enhancement of the microbial degradation of crude oil by the ciliate Colpidium colpoda. The Journal of General and Applied Microbiology. https://doi.org/10.2323/jgam.29.41.

  • Roy, T., Biswas, D. R., Ghosh, A., Patra, A. K., Singh, R. D., Sarkar, A., & Biswas, S. S. (2019). Dynamics of culturable microbial fraction in an Inceptisol under short-term amendment with municipal sludge from different sources. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.12.024.

  • Saikia, R., Sharma, S., Thind, H. S., Sidhu, H. S., & Singh, Y. (2019). Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in rice-wheat system. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.04.035.

  • Salamun, P., Renco, M., Kucanova, E., Brazova, T., Papajova, I., Miklisova, D., & Hanzelova, V. (2012). Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology. https://doi.org/10.1007/s10646-012-0988-y.

  • Sardans, J., & Penuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2004.08.004.

  • Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, V. S., Farooq, M., Singh, R., Rahman, M., & Meena, H. N. (2019). Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.09.012.

  • Schaeffer, A., Amelung, W., Hollert, H., Kaestner, M., Kandeler, E., Kruse, J., Miltner, A., Ottermanns, R., Pagel, H., Peth, S., Poll, C., Rambold, G., Schloter, M., Schulz, S., Streck, T., & Roß-Nickoll, M. (2016). The impact of chemical pollution on the resilience of soils under multiple stresses: a conceptual framework for future research. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.06.161.

  • Schneider, A. R., Gommeaux, M., Duclercq, J., Fanin, N., Conreux, A., Alahmad, A., Lacoux, J., Roger, D., Spicher, F., Ponthieu, M., Cances, B., Morvan, X., & Marin, B. (2017). Response of bacterial communities to Pb smelter pollution in contrasting soils. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.06.159.

  • Schutze, E., Klose, M., Merten, D., Nietzsche, S., Senftleben, D., Roth, M., & Kothe, E. (2014). Growth of Streptomyces in soil and their impact on bioremediation. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2013.12.055.

  • Selenska-Pobell, S. (2002). Diversity and activity of bacteria in uranium waste piles. In M. J. Keith-Roach & F. R. Livens (Eds.), Interactions of microorganisms with radionuclides (pp. 225–254). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.67.9.4215-4224.2001.

  • Seybold, C. A., Mausbach, M. J., Karlen, D. L., & Rogers, H. H. (1998). Quantification of soil. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 387–404). New York: CRC Press LLC..

    Google Scholar 

  • Sharma, N., Singh, G., Sudarsan, Y., Singh, S. K., & Malik, M. (2019). An improved method for extraction of soil microbial DNA for metagenomics study. Journal of Advanced Research in Agriculture Science and Technology, 2(2), 1–4.

    CAS  Google Scholar 

  • Sharma, R., & Sharma, P. K. (2018). Metatrancriptome sequencing and analysis of agriculture soil provided significant insights about the microbial community structure and function. Ecological Genetics and Genomics. https://doi.org/10.1016/j.egg.2017.10.001.

  • Shi, S., Tian, L., Nasir, F., Bahadur, A., Batool, A., Luo, S., Yang, F., Wang, Z., & Tian, C. (2019). Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.11.003.

  • Shi, Y., Ziadi, N., Hamel, C., Belanger, G., Abdi, D., Lajeunesse, J., Lafond, J., Lalande, R., & Shang, J. (2020). Soil microbial biomass, activity and community structure as affected by mineral phosphorus fertilization in grasslands. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2019.103391.

  • Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U., Bagherzadeh, A., Mousavi, R., & Karimi, S. (2017). Modeling soil cation exchange capacity using soil parameters: Assessing the heuristic models. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2017.02.016.

  • Singh, A. K., & Pathak, S. K. (2018). Potassium in tea (Camellia sinensis (L) O. Kuntze) cultivation from soil to cup quality - a review. Agricultural Reviews. https://doi.org/10.18805/ag.R-1731.

  • Skopp, J., Jawson, M. D., & Doran, J. W. (1990). Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1990.03615995005400060018x.

  • Somasundaram, S., Abraham, J. S., Maurya, S., Makhija, S., Gupta, R., & Toteja, R. (2018). Cellular and molecular basis of heavy metal-induced stress in ciliates. Current Science. https://doi.org/10.18520/cs/v114/i09/1858-1865.

  • Song, L., Li, H., Wang, K., Wu, D., & Wu, H. (2014). Ecology of testate amoebae and their potential use as palaeohydrologic indicators from peatland in Sanjiang Plain, Northeast China. Frontiers in Earth Science. https://doi.org/10.1007/s11707-014-0435-x.

  • Starke, R., Jehmlich, N., & Bastida, F. (2018). Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. Journal of Proteomics. https://doi.org/10.1016/j.jprot.2018.11.011.

  • Stephen, J. R., Chang, Y. J., Macnaughton, S. J., Kowalchuk, G. A., Leung, K. T., Flemming, C. A., & White, D. C. (1999). Effect of toxic metals on indigenous soil β-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Applied and Environmental Microbiology, 65(1), 95–101.

    Article  CAS  Google Scholar 

  • Stott, D. E., Andrews, S. S., Liebig, M. A., Wienhold, B. J., & Karlen, D. L. (2010). Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2009.0029.

  • Sugihara, S., Funakawa, S., Kilasara, M., & Kosaki, T. (2010). Effect of land management and soil texture on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2009.10.003.

  • Sukdeo, N., Teen, E., Rutherford, P. M., Massicotte, H. B., & Egger, K. N. (2018). Selecting fungal disturbance indicators to compare forest soil profile re-construction regimes. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.09.021.

  • Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kolli, R., & Astover, A. (2011). Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma. https://doi.org/10.1016/j.geoderma.2011.04.005.

  • Suyal, D. C., Joshi, D., Debbarma, P., Soni, R., Das, B., & Goel, R. (2019). Soil metagenomics: Uncluturable microbial diversity and its function. In A. Varma & D. K. Choudhary (Eds.), Mycorrhizosphere and pedogenesis (pp. 355–362). Switzerland: Springer.

    Chapter  Google Scholar 

  • Tabatabai, M. A. (1984). Importance of sulphur in crop production. Biogeochemistry. https://doi.org/10.1007/BF02181120.

  • Tabor, N. J., Myers, T. S., & Michel, L. A. (2017). Sedimentologist’s guide for recognition, description, and classification of paleosols. In K. E. Zeigler & W. G. Parker (Eds.), Terrestrial depositional systems: deciphering complexities through multiple stratigraphic methods (pp. 165–208). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Tan, X., Liu, Y., Yan, K., Wang, Z., Lu, G., He, Y., & He, W. (2017). Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.11.076.

  • Tanji, K. K. (2002). Salinity in the soil environment. In A. Lauchli & U. Luttge (Eds.), Salinity: environment – plants – molecules (pp. 21–51). Netherlands: Springer.

    Google Scholar 

  • Tiwari, R., Dwivedi, B. S., Sharma, Y. M., Sharma, A., & Dwivedi, A. K. (2019). Activities of β-glucosidase, phosphatase and dehydrogenase as soil quality indicators: a review. International Journal of Current Microbiology and Applied Sciences. https://doi.org/10.20546/ijcmas.2019.806.101.

  • Turner, B. L., Hopkins, D. W., Haygarth, P. M., & Ostle, N. (2002). β-Glucosidase activity in pasture soils. Applied Soil Ecology. https://doi.org/10.1016/S0929-1393(02)00020-3.

  • Tveit, A. T., Urich, T., & Svenning, M. M. (2014). Metatranscriptomic analysis of arctic peat soil microbiota. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.01030-14.

  • Ulfig, K., Plaza, G., Terakowski, M., & Worsztynowicz, A. (2002). Keratinolytic fungi in an acidic petroleum waste lagoon at a petroleum refinery. Rocz Panstw Zakl Hig, 53(3), 267–276.

    CAS  Google Scholar 

  • Usharani, K. V., Roopashree, K. M., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8(5), 1256–1267.

    Google Scholar 

  • Valle, S. R., & Carrasco, J. (2018). Soil quality indicator selection in Chilean volcanic soils formed under temperate and humid conditions. Catena. https://doi.org/10.1016/j.catena.2017.10.024.

  • Vallejo, V. E., Arbeli, Z., Terán, W., Lorenz, N., Dick, R. P., & Roldan, F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2012.01.022.

  • VeVerka, J. S., Udawatta, R. P., & Kremer, R. J. (2019). Soil health indicator responses on Missouri claypan soils affected by landscape position, depth, and management practices. Journal of Soil and Water Conservation. https://doi.org/10.2489/jswc.74.2.126.

  • Vinhal-Freitas, I. C., Correa, G. F., Wendling, B., Bobuska, L., & Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2016.11.020.

  • Volchko, Y., Norrman, J., Rosen, L., & Norberg, T. (2014). A minimum data set for evaluating the ecological soil functions in remediation projects. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-014-0939-8.

  • Wagner, W., Lemoine, G., & Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment. https://doi.org/10.1016/S0034-4257(99)00036-X.

  • Wang, H. B., Zhang, Z. X., Li, H., He, H. B., Fang, C. X., Zhang, A. J., Li, Q. S., Chen, R. S., Guo, X. K., Lin, H. F., Wu, L. K., Lin, S., Chen, T., Lin, R. Y., Peng, X. X., & Lin, W. X. (2011). Characterization of metaproteomics in crop rhizospheric soil. Journal of Proteome Research. https://doi.org/10.1021/pr100981r.

  • Wang, X. C., & Lu, Q. (2006). Beta-glucosidase activity in paddy soils of the Taihu Lake region. China Pedosphere. https://doi.org/10.1016/S1002-0160(06)60033-7.

  • Wessen, E., & Hallin, S. (2011). Abundance of archeal and bacterial ammonia oxidizers-possible bioindicator for soil monitoring. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2011.04.018.

  • Wichern, J., Wichern, F., & Joergensen, R. G. (2006). Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma. https://doi.org/10.1016/j.geoderma.2006.08.001.

  • Winding, A., Hund-Rinke, K., & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2005.03.026.

  • Withers, E., Hill, P. W., Chadwick, D. R., & Jones, D. L. (2020). Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2020.107758.

  • Wolejko, E., Jablonska-Trypuc, A., Wydro, U., Butarewicz, A., & Lozowicka, B. (2019). Soil biological activity as an indicator of soil pollution with pesticides–a review. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2019.09.006.

  • Wu, C., Liu, G., Huang, C., & Liu, Q. (2019). Soil quality assessment in Yellow River Delta: establishing a minimum data set and fuzzy logic model. Geoderma. https://doi.org/10.1016/j.geoderma.2018.07.045.

  • Wyszkowska, J., Kucharski, M., & Kucharski, J. (2010). Activity of beta-glucosidase, arylsulfatase and phosphatases in soil contaminated with copper. Journal of Elementology, 15(1), 213–226.

    Google Scholar 

  • Xu, M., Ma, R., Huang, C., Shi, G., Zhou, T., & Deng, J. (2020). Competitive redox reaction of Au-NCs/MnO2 nanocomposite: toward colorimetric and fluorometric detection of acid phosphatase as an indicator of soil cadmium contamination. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2019.10.062.

  • Xu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2016.02.004.

  • Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2015.11.003.

  • Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil and Tillage Research. https://doi.org/10.1016/j.still.2012.11.007.

  • Yeates, G. W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-003-0586-5.

  • Yeates, G. W., & Bongers, T. (1999). Nematode diversity in agroecosystems. In M. G. Paoletti (Ed.), Invertebrate biodiversity as bioindicators of sustainable landscapes (pp. 13–135). Netherlands: Elsevier.

    Google Scholar 

  • Yemefack, M., Jetten, V. G., & Rossiter, D. G. (2006). Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil and Tillage Research. https://doi.org/10.1016/j.still.2005.02.017.

  • Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2017.10.301.

  • Zhang, H., Huang, M., Zhang, W., Gardea-Torresdey, J. L., White, J. C., Ji, R., & Zhao, L. (2020). Silver Nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environmental Science & Technology. https://doi.org/10.1021/acs.est.9b07562.

  • Zhao, F., & Xu, K. (2016). Biodiversity patterns of soil ciliates along salinity gradients. European Journal of Protistology. https://doi.org/10.1016/j.ejop.2015.12.006.

  • Zhao, F., Tausz, M., & De Kok, L. J. (2008). Role of sulfur for plant production in agricultural and natural ecosystem. In R. Hell, C. Dahl, D. Knaff, & T. Leustek (Eds.), Sulfur Metabolism in Phototropic Organisms (pp. 417–435). Netherlands: Springer.

    Chapter  Google Scholar 

  • Zhao, L., Zhang, H., White, J. C., Chen, X., Li, H., Qu, X., & Ji, R. (2019a). Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environmental Science: Nano. https://doi.org/10.1039/C9EN00137A.

  • Zhao, Z. B., He, J. Z., Geisen, S., Han, L. L., Wang, J. T., Shen, J. P., Wei, W. X., Fang, P. P. L., & Zhang, L. M. (2019b). Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome. https://doi.org/10.1186/s40168-019-0647-0.

  • Zheng, X., Chen, L., Chen, M., Chen, J., & Li, X. (2019). Functional metagenomics to mine soil microbiome for novel cadmium resistance genetic determinants. Pedosphere. https://doi.org/10.1016/S1002-0160(19)60804-0.

Download references

Acknowledgments

The authors are grateful to the Principal, Acharya Narendra Dev College, University of Delhi, for providing necessary facilities and Prof. G. R. Sapra (formerly at Department of Zoology, New Delhi) for his guidance and support. The support extended by the Principal, Maitreyi College, University of Delhi, is thankfully acknowledged. The authors also thankfully acknowledge the financial support provided by CSIR (Council of Scientific and Industrial Research) to Swati Maurya, Jeeva Susan Abraham, and UGC (University Grants Commission), to Sripoorna Somasundaram.

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

This study was funded by CSIR (Council of Scientific and Industrial Research) to Swati Maurya, Jeeva Susan Abraham, and UGC (University Grants Commission), to Sripoorna Somasundaram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Makhija.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent to participate

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S., Abraham, J.S., Somasundaram, S. et al. Indicators for assessment of soil quality: a mini-review. Environ Monit Assess 192, 604 (2020). https://doi.org/10.1007/s10661-020-08556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08556-z

Keywords

Navigation