Skip to main content
Log in

A Brief Review on Fluorescent Copper Sensor Based on Conjugated Organic Dyes

  • REVIEW ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The design and development of the fluorescence reporting molecules for the trace recognition of the metallic ions in the aqueous, mixed organic aqueous media, environmental specimen, living things e.g., body fluids, serum, urine etc is the evergreen research area. Among several methodologies utilized for these purposes, the fluorescent techniques have wonderful impact in the era of metal sensor development due to their acclamatory features of non-invasive detection process and appreciable sensitivity. The utilization of small organic molecules for the sensation of metallic ions through the fluorescent techniques harvested the wonderful results having some interesting features of chromogenic response on metal binding, robustness in the preparation and applicability to establish the metallic accumulation level inside the live cells via bioimaging studies. The detailed knowledge and background about the several reported chemosening strategies have the utmost importance in order to understand or to design the novel molecules for metal sensing purposes. The objective of the presents review was to compile the best ever used copper sensing strategies via fluorescent means in the running decade. We have summarized the values of optical positions of the spectral lines, spectral shifting upon metal binding, binding/association/dissociation constants, chromogenic changes in the reaction mixture, proposed complexation mechanism of the ligand with the copper, ligand sensitivities toward the copper recognition, binding stoichiometries and the detailed bioimaging results where applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97
Fig. 98
Fig. 99
Fig. 100
Fig. 101
Fig. 102
Fig. 103
Fig. 104
Fig. 105
Fig. 106
Fig. 107
Fig. 108
Fig. 109
Fig. 110
Fig. 111
Fig. 112
Fig. 113
Fig. 114
Fig. 115
Fig. 116
Fig. 117
Fig. 118
Fig. 119
Fig. 120
Fig. 121
Fig. 122
Fig. 123
Fig. 124
Fig. 125
Fig. 126
Fig. 127
Fig. 128
Fig. 129
Fig. 130

Similar content being viewed by others

References

  1. Azadbakht R, Khanabadi, J (2014) A novel fluorescent nano-chemosensor for Al(III) ions using a new macrocyclic receptor. Spectrochim Acta A Mol Biomol Spectrosc 124:249–255

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZX, Ding SN (2014) One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of silver(I) and mercury(II) ions. Anal Chem 86:7436 – 7445

    Article  CAS  PubMed  Google Scholar 

  3. Verma R, Gupta BD (2015) Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem 166:568–575

    Article  CAS  PubMed  Google Scholar 

  4. Wang SQ, Gao Y, Wang HY, Zheng XX, Shen SL, Zhang YR, Zhao BX, Synthesis (2013) X-ray crystal structure and optical properties of novel 1,3,5-triarylpyrazoline derivatives and the fluorescent sensor for Cu2+. Spectrochim Acta A Mol Biomol Spectrosc 106:110–117

    Article  CAS  PubMed  Google Scholar 

  5. Domaille DW, Zeng L, Chang CJ (2010) Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J Am Chem Soc 132:1194–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grasso GI, Gentile S, Giuffrida ML, Satriano C, Sgarlata C, Sgarzi M, Tomaselli G, Arena G, Prodi L (2013) Ratiometric fluorescence sensing and cellular imaging of Cu2+ by a new water soluble trehalose-naphthalimide based chemosensor. RSC Adv 3:24288–24297

    Article  CAS  Google Scholar 

  7. Yin S, Yuan W, Huang J, Xie D, Liu B, Jiang K, Qiu, H (2012) A BODIPY derivative as a colorimetric, near-infrared and turn-on chemosensor for Cu2+. Spectrochim Acta A Mol Biomol Spectrosc 96:82–88

    Article  CAS  PubMed  Google Scholar 

  8. He X, Zhang J, Liu X, Dong L, Li D, Qiu H, Yin S (2014) A novel BODIPY-based colorimetric and fluorometric dual-modechemosensor for Hg2+ and Cu2+. Sens Actuators B Chem 192:29–35

    Article  CAS  Google Scholar 

  9. Bandi KR, Singh AK, Upadhyay A (2014) Electroanalytical and naked eye determination of Cu2+ ion in various environmental samples using 5-amino-1,3,4-thiadiazole-2-thiol based Schiff bases. Mater Sci Eng C 34:149–157

    Article  CAS  Google Scholar 

  10. Aksunera N, Hendena E, Yilmazb I, Cukurovali A (2008) Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films. Sens Actuators B Chem 134:510–515

    Article  CAS  Google Scholar 

  11. Guo ZQ, Chen WQ, Duan XM (2010) Highly selective visual detection of Cu(II) utilizing intramolecular hydrogen bond-stabilized merocyanine in aqueous buffer solution. Org Lett 12:2202–2205

    Article  CAS  PubMed  Google Scholar 

  12. García-Beltrán O, Mena N, Friedrich LC, Netto-Ferreira JC, Vargas V, Quina FH, Núñez MT, Cassels BK (2012) Design and synthesis of a new coumarin-based ‘turn-on’ fluorescent probe selective for Cu2+. Tetrahedron Lett 53:5280–5283

    Article  CAS  Google Scholar 

  13. Xu H, Wang X, Zhang X, Wu Y, Liu Z (2013) Coumarin-hydrazone based high selective fluorescence sensor for copper(II) detection in aqueous solution. Inorg Chem Commun 34:8–11

    Article  CAS  Google Scholar 

  14. Li M, Ge H, Arrowsmith RL, Mirabello V, Botchway SW, Zhu W, Pascu SI, James TD (2014) Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(II). Chem Commun 50:11806–11809

    Article  CAS  Google Scholar 

  15. Park JS, Jeong S, Dho S, Lee M, Song C (2010) Colorimetric sensing of Cu2+ using a cyclodextrinedye rotaxane. Dyes Pigm 87:49–54

    Article  CAS  Google Scholar 

  16. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Guo Y, Lei Y, Gao W, Liu M, Chen J, Hu Y, Huang X, Wu H (2015) D-p-A benzo[c][1,2,5] selenadiazole-based derivatives via an ethynyl bridge: photophysical properties, solvatochromism and applicationsas fluorescent sensors. Dyes Pigm 112:105–115

    Article  CAS  Google Scholar 

  18. Wang GL, Liu KL, Dong YM, Li ZJ, Zhang C (2014) In situ formation of p–n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection. Anal Chim Acta 827:34–39

    Article  CAS  PubMed  Google Scholar 

  19. Shen L, He Y, Yang X, Ma W (2015) The synthesis and mercury-recognizing skill of two emission ‘‘turn-on’’rhodamine derivatives excited by rare earth up-conversion lattice. Spectrochim Acta A Mol Biomol Spectrosc 135:172–179

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Li H, Long L, Xiao G, Xie D (2012) Fast responsive fluorescence turn-onsensor for Cu2 + and its application in live cell imaging. J Lumin 132:2456–2461

    Article  CAS  Google Scholar 

  21. Dong M, Ma TH, Zhang AJ, Dong YM, Wang YW, Peng Y (2010) A series of highly sensitive and selective fluorescent and colorimetric “off-on” chemosensors for Cu (II) based on rhodamine derivatives. Dyes Pigm 87:164–172

    Article  CAS  Google Scholar 

  22. Yu M, Yuan R, Shi C, Zhou W, Wei L, Li Z (2013) 1,8-Naphthyridine and 8-hydroxyquinoline modified rhodamine B derivatives: “turn-on” fluorescent and colorimetric sensors for Al3+ and Cu2+. Dyes Pigm 99:887–894

    Article  CAS  Google Scholar 

  23. Chen X, Jou MJ, Lee H, Kou S, Lim J, Nam SW, Park S, Kim KM, Yoon J (2009) New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sens Actuators B Chem 137:597–602

    Article  CAS  Google Scholar 

  24. Lee HY, Swamy K. M. K., Jung JY, Kim G, Yoon J (2013) Rhodamine hydrazone derivatives based selective fluorescent and colorimetric chemodosimeters for Hg2 + and selective colorimetric chemosensor for Cu2+. Sens Actuators B Chem 182:530–537

    Article  CAS  Google Scholar 

  25. Goswami S, Sen D, Das AK, Das NK, Aich K, Fun HK, Quah CK, Maity AK, Sah P (2013) A new rhodamine-coumarin Cu2+-selective colorimetric and ‘off–on’ fluorescence probe for effective use in chemistry and bioimaging along with its bound X-ray crystal structure. Sens Actuators B Chem 183:518–525

    Article  CAS  Google Scholar 

  26. Gao W, Yang Y, Huo F, Yin C, Xu M, Zhang Y, Chao J, Jin S, Zhang S (2014) An ICT colorimetric chemosensor and a non-ICT fluorescentchemosensor for the detection copper ion. Sens Actuators B Chem 193:294–300

    Article  CAS  Google Scholar 

  27. Puangploya P, Smanmoo S, Surareungchai W (2014) A new rhodamine derivative-based chemosensor for highly selectiveand sensitive determination of Cu2+. Sens Actuators B Chem 193:679–686

    Article  CAS  Google Scholar 

  28. Tang L, Dai X, Wen X, Wu D, Zhang Q (2015) A rhodamine–benzothiazole conjugated sensor for colorimetric/ratiometric and sequential recognition of copper(II) and sulfide in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 139:329–334

    Article  CAS  PubMed  Google Scholar 

  29. Saleem M, Lee KH (2014) Selective fluorescence detection of Cu2 + in aqueous solution and living cells. J Lumin 145:843–848

    Article  CAS  Google Scholar 

  30. Muthuraj B, Deshmukh R, Trivedi V, Iyer PK (2014) Highly selective probe detects Cu2 + and endogenous NO gas in living cell. ACS Appl Mater Interfaces 6:6562 – 6569

    Article  CAS  PubMed  Google Scholar 

  31. Kar C, Adhikari MD, Ramesh A, Das G (2013) NIR- and FRET-based sensing of Cu2+ and S2‑ in physiological conditions and in live cells. Inorg Chem 52:743 – 752

    Article  CAS  PubMed  Google Scholar 

  32. Tang L, Dai X, Cai M, Zhao J, Zhou P, Huang Z (2014) Relay recognition of Cu2+ and S2– in water by a simple 2-(20-aminophenyl)benzimidazole derivatized fluorescent sensor through modulating ESIPT. Spectrochim Acta A Mol Biomol Spectrosc 122:656–660

    Article  CAS  PubMed  Google Scholar 

  33. Tang L, Cai M (2012) A highly selective and sensitive fluorescent sensor for Cu2 + and its complex for successive sensing of cyanide via Cu2 + displacement approach. Sens Actuators B Chem 173:862–867

    Article  CAS  Google Scholar 

  34. Tang L, Caia M, Huang Z, Zhong K, Hou S, Bian Y, Nandhakumar R (2013) Rapid and highly selective relay recognition of Cu(II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water. Sens Actuator B Chem 185:188–194

    Article  CAS  Google Scholar 

  35. Cimen O, Dinicalp H, Varlıklı C (2015) Studies on UV–vis and fluorescence changements in Co2 + and Cu2 + recognition by a new benzimidazole–benzothiadiazole derivative. Sens Actuators B Chem 209:853–863

    Article  CAS  Google Scholar 

  36. Saluja P, Kaur N, Singh N, Jang DO (2012) A benzimidazole-based fluorescent sensor for Cu2 + and its complex with a phosphate anion formed through a Cu2 + displacement approach. Tetrahedron Lett 53:3292–3295

    Article  CAS  Google Scholar 

  37. Fu Y, Feng QC, Jiang XJ, Xu H, Lia M, Zang SQ (2014) New fluorescent sensor for Cu2 + and S2 – in 100% aqueous solution based on displacement approach. Dalton Trans 43:5815–5822

    Article  CAS  PubMed  Google Scholar 

  38. Lee HG, Kim KB, Park GJ, Na YJ, Jo HY, Lee SA, Kim C (2014) An anthracene-based fluorescent sensor for sequential detection of zinc and copper ions. Inorgan Chem Commun 39:61–65

    Article  CAS  Google Scholar 

  39. Li F, Li L, Yang W, Zheng LS, Zheng ZJ, Jiang K, Lu Y, Xu LW (2013) Chiral Ar-BINMOL-derived salan as fluorescent sensor for recognition of CuCl and cascade discrimination of a-amino acids. Tetrahedron Lett 54:1584–1588

    Article  CAS  Google Scholar 

  40. Reynal A, Etxebarria J, Nieto N, Serres S, Palomares E, Vidal-Ferran VA (2010) Bipyridine-based “naked-eye” fluorimetric Cu2 + chemosensor. Eur J Inorg Chem 1360–1365

  41. Chou CY, Liu SR, Wu SP (2013) A highly selective turn-on fluorescent sensor for Cu(II) based on an NSe2 chelating moiety and its application in living cell imaging. Analyst 138:3264–3270

    Article  CAS  PubMed  Google Scholar 

  42. Qi X, Jun EJ, Xu L, Kim SJ, Hong J. S. J., Yoon YJ, Yoon J (2006) New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J Org Chem 71:2881–2884

    Article  CAS  PubMed  Google Scholar 

  43. Tabakci B, Yilmaz A (2014) Amine-derivatized calix[4]arenes for sensitive extraction of cupric ion and formation of amine radical cation. J Mol Struct 1075:96–102

    Article  CAS  Google Scholar 

  44. Kim HJ, Kim SH, Kim H, Anh N, Lee JH, Lee CH, Kim JS (2009) ICT-based Cu(II)-sensing 9,10-anthraquinonecalix[4]crown. Tetrahedron Lett 50:2782–2786

    Article  CAS  Google Scholar 

  45. Chawla HM, Goel P, Shukla R (2014) Calix[4]arene based molecular probe for sensing copper ions. Tetrahedron Lett 55:2173–2176

    Article  CAS  Google Scholar 

  46. Ho IT, Chu JH, Chung WS (2011) Calix[4]arene with lower-rim β-amino α,β-unsaturated ketones containing bis-chelating sites as a highly selective fluorescence turn-on chemosensor for two copper(II) ions. Eur J Org Chem 1472–1481

  47. Pathak RK, Hinge VK, Mondala P, Rao CP (2012) Ratiometric fluorescence off-on-off sensor for Cu2 + in aqueous buffer by a lower rim triazole linked benzimidazole conjugate of calix[4]arene. Dalton Trans 41:10652–10660

    Article  CAS  PubMed  Google Scholar 

  48. Jo HY, Park GJ, Bok KH, Park KM, Chang PS, Cheal K (2015) An asymmetric naked-eye chemo-sensor for Cu2 + in aqueous solution. Inorgan Chem Commun 51:90–94

    Article  CAS  Google Scholar 

  49. Azath IA, Pitchumani K (2013) Flavone modified-β-cyclodextrin as a highly selective and efficientfluorescent chemosensor for Cu2 + ions and l-histidine. Sens Actuators B Chem 188:59–64

    Article  CAS  Google Scholar 

  50. Wang MQ, Li K, Hou JT, Wu MY, Huang Z, Yu XQ (2012) BINOL-based fluorescent sensor for recognition of Cu(II) and sulfide anion in water. J Org Chem 77:8350 – 8354

    Article  CAS  PubMed  Google Scholar 

  51. Yang X, Liu X, Shen K, Zhu X, Cheng YA (2011) Chiral perazamacrocyclic fluorescent sensor for cascade recognition of Cu(II) and the unmodified r-amino acids in protic solutions. Org Lett 13:3510–3513

    Article  CAS  PubMed  Google Scholar 

  52. Subhasri A, Anbuselvan C, Rajendraprasad N (2014) Twin applications of highly selective Cu2 + fluorescent chemosensor and cytotoxicity of 2-(2-phenylhydrazono)-1H-indene-1,3(2H)-dione and 2-(2-(4-methoxyphenyl) hydrazono)-1Hindene- 1,3(2H)-dione: molecular docking and DFT studies. RSC Adv 4:60658–60669

    Article  CAS  Google Scholar 

  53. Fang B, Liang Y, Chen F (2014) Highly sensitive and selective determination of cupricions by using N,N′-bis(salicylidene)-o-phenylenediamineas fluorescent chemosensor and relatedapplications. Talanta 119:601–605

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Fei Q, Shan H, Cui M, Liu Q, Feng G, Huan Y (2014) A novel fluorescent ‘off-on-off’ probe for relay recognition of Zn2 + and Cu2 + derived from N,Nbis(2-pyridylmethyl)amine. Analyst 139:1868–1875

    Article  CAS  PubMed  Google Scholar 

  55. Wu X, Guo Z, Wu Y, Zhu S, James TD, Zhu W (2013) Near-infrared colorimetric and fluorescent Cu2 + sensors based on indoline – benzothiadiazole derivatives via formation of radical cations. ACS Appl Mater Interfaces 5:12215 – 12220

    Article  CAS  PubMed  Google Scholar 

  56. Aksuner N, Henden E, Yilmaz I, Cukurovali, A (2009) A highly sensitive and selective fluorescent sensor for the determination of copper(II) based on a schiff base. Dyes Pigm 83:211–217

    Article  CAS  Google Scholar 

  57. Kaura P, Sareen D, Singh K (2011) Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative. Talanta 83:1695–1700

    Article  CAS  Google Scholar 

  58. Tang YH, Qu Y, Song Z, He XP, Xie J, Hua J, Chen GR (2012) Discovery of a sensitive Cu(II)-cyanide “off–on” sensor based on new C-glycosyl triazolyl bis-amino acid scaffold. Org Biomol Chem 10:555–560

    Article  CAS  PubMed  Google Scholar 

  59. Midya GC, Paladhi S, Bhowmik S, Saha S, Dash J (2013) Design and synthesis of an on–off “click” fluorophore that executes a logic operation and detects heavy and transition metal ions in water and living cells. Org Biomol Chem 11:3057–3063

    Article  CAS  PubMed  Google Scholar 

  60. Ko KC, Wu JS, Kim HJ, Kwon PS, Kim JW, Bartsch RA, Lee JY, Kim JS (2011) Rationally designed fluorescence ‘turn-on’ sensor for Cu2+. Chem Commun 47:3165–3167

    Article  CAS  Google Scholar 

  61. Hrishikesan E, Saravanan C, Kannan P (2011) Bis-triazole-appended azobenzene chromophore for selective sensing of copper(II) ion. Ind Eng Chem Res 50:8225–8229

    Article  CAS  Google Scholar 

  62. Lee YH, Park N, Park YB, Hwang YJ, Kang C, Kim JS (2014) Organelle-selective fluorescent Cu2+ ion probes: revealing the endoplasmic reticulum as a reservoir for Cu-overloading. Chem Commun 50:3197–3200

    Article  CAS  Google Scholar 

  63. Yang L, Zhu W, Fang M, Zhang Q, Li C (2013) A new carbazole-based Schiff-base as fluorescentchemosensor for selective detection of Fe 3 + and Cu 2+. Spectrochim Acta A Mol Biomol Spectrosc 109:186–192

    Article  CAS  PubMed  Google Scholar 

  64. Helal A, Rashid M. H. O., Choi CH, Kim HS (2011) Chromogenic and fluorogenic sensing of Cu2 + based on coumarin. Tetrahedron 67:2794 – 2802

    Article  CAS  Google Scholar 

  65. Yu KK, Li K, Hou JT, Yu XQ (2013) Coumarin–TPA derivative: a reaction-based ratiometric fluorescent probe for Cu(I). Tetrahedron Lett 54:5771–5774

    Article  CAS  Google Scholar 

  66. García-Beltrán O, Cassels BK, Mena N, Nuñez MT, Yañez O, Caballero, J (2014) A coumarinylaldoxime as a specific sensor for Cu2 + and its biological application. Tetrahedron Lett 55:873–876

    Article  CAS  Google Scholar 

  67. Kim MH, Jang HH, Yi S, Chang SK, Han MS Coumarin-derivative-based off–on catalytic chemodosimeter for Cu2 + Ion. Chem Commun. 2009, 4838–4840

  68. He G, Zhao X, Zhang X, Fan H, Wu S, Li H, Hea C, Duan C (2010) A turn-on PET fluorescence sensor for imaging Cu2+ in living cells. New J Chem 34:1055–1058

    Article  CAS  Google Scholar 

  69. Huang L, Cheng J, Xie K, Xi P, Hou F, Li Z, Xie G, Shi Y, Liu H, Bai D, Zeng Z (2011) Cu2+-selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans 40:10815–10817

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Lu L, Ye W, Zheng O, Qiu B, Lin Z, Guo L, Chen G (2014) Fluorescence sensor for Cu(II) in the serum sample based on click chemistry. Analyst 139:656–659

    Article  CAS  PubMed  Google Scholar 

  71. Linj Q, Chen P, Liu J, Fu YP, Zhang YM, Wei TB (2013) Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity. Dyes Pigm 98:100 – 105

    Article  CAS  Google Scholar 

  72. Yeh JT, Chen WC, Liu SR, Wu SP (2014) A coumarin-based sensitive and selective fluorescent sensor for copper(II) ions. New J Chem 38:4434 – 4439

    Article  CAS  Google Scholar 

  73. Ciesienski KL, Hyman LM, Derisavifard S, Franz KJ (2010) Toward the detection of cellular copper(II) by a Light-activated fluorescence increase. Inorg Chem 49:6808–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  CAS  PubMed  Google Scholar 

  75. Kamal A, Kumar K, Kumar V, Mahajan RK (2014) Electrochemical and chromogenic sensors based on ferrocene appended chalcone for selective quantification of copper (II). Electrochim Acta 145:307–313

    Article  CAS  Google Scholar 

  76. Basurto S, Riant O, Moreno D, Rojo J, Torroba T (2007) Colorimetric detection of Cu[II] cation and acetate, benzoate, and cyanide anions by cooperative receptor binding in new r,r¢-bis-substituted donor-acceptor ferrocene sensors. J Org Chem 72:4673–4688

    Article  CAS  PubMed  Google Scholar 

  77. Joseph R, Ramanujam B, Acharya A, Rao CP (2009) Fluorescence switch-on sensor for Cu2 + by an amide linked lower rim 1,3-bis(2-picolyl)amine derivative of calix[4]arene in aqueous methanol. Tetrahedron Lett 50:2735–2739

    Article  CAS  Google Scholar 

  78. Chen X, Li Z, Xiang Y, Tong A (2008) Salicylaldehyde fluorescein hydrazone: a colorimetric logic chemosensor for pH and Cu(II). Tetrahedron Lett 49:4697–4700

    Article  CAS  Google Scholar 

  79. Wei G, Wang L, Jiao J, Hou J, Cheng Y, Zhu C (2012) Cu2+ triggered fluorescence sensor based on fluorescein derivative for Pd2+ detection. Tetrahedron Lett 53:3459–3462

    Article  CAS  Google Scholar 

  80. Li T, Yang Z, Li Y, Liu Z, Qi G, Wang G (2011) A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion. Dyes Pigm 88:103–108

    Article  CAS  Google Scholar 

  81. Seo S, Lee HY, Park M, Lim JM, Kang D, Yoon J, Jung JH (2010) Fluorescein-functionalized silica nanoparticles as a selective fluorogenic chemosensor for Cu2 + in living cells. Eur J Inorg Chem 843–847

  82. Hatai J, Pal S, Bandyopadhyay S (2012) An inorganic phosphate (Pi) sensor triggers ‘turn-on’ fluorescence response by removal of a Cu2 + ion from a Cu2+-ligand sensor: determination of Pi in biological samples. Tetrahedron Lett 53:4357–4360

    Article  CAS  Google Scholar 

  83. Lu F, Yamamura M, Nabeshima T (2013) Luminescent biscyclometalated iridium(III) complex for selective and switchable Cu2 + ion binding in aqueous media. Tetrahedron Lett 54:779–782

    Article  CAS  Google Scholar 

  84. Goswami S, Chakrabarty R (2009) Fluorescence sensing of Cu2 + within a pseudo 18-crown-6 cavity. Tetrahedron Lett 50:5910–5913

    Article  CAS  Google Scholar 

  85. Singhal NK, Ramanujam B, Mariappanadar V, Rao CP (2006) carbohydrate-based switch-on molecular sensor for Cu(II) in buffer: absorption and fluorescence study of the selective recognition of Cu(II) ions by galactosyl derivatives in HEPES buffer. Org Lett 8:3525–3528

    Article  CAS  PubMed  Google Scholar 

  86. Schwarze T, Kelling A, Mller H, Trautmann M, Klamroth T, Baumann O, Strauch P, Holdt HJ (2012) N-2-pyridinylmethyl-N′-arylmethyl-diaminomaleonitriles: new highly selective chromogenic chemodosimeters for copper(II). Chem Eur J 18:10506–10510

    Article  CAS  PubMed  Google Scholar 

  87. Li Z, Zhang L, Wang L, Guo Y, Cai L, Yu M, Wei L (2011) Highly sensitive and selective fluorescent sensor for Zn2+/Cu2 + and new approach for sensing Cu2 + by central metal displacement. Chem Commun 47:5798–5800

    Article  CAS  Google Scholar 

  88. Maity D, Govindaraju T (2011) Highly selective visible and near-IR sensing of Cu2 + based on thiourea–salicylaldehyde coordination in aqueous media. Chem Eur J 17:1410–1414

    Article  CAS  PubMed  Google Scholar 

  89. Bhalla V, Tejpal R, Kumar M (2011) Terphenyl based fluorescent chemosensor for Cu2 + and F – ions employing excited state intramolecular proton transfer. Tetrahedron 67:1266–1271

    Article  CAS  Google Scholar 

  90. Mahapatra AK, Hazra G, Das NK, Goswami S (2011) A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2 + detection by deprotonation of secondary amines. Sens Actuators B Chem 156:456–462

    Article  CAS  Google Scholar 

  91. Wenfeng L, Hengchang M, Con L, Yuan M, Chunxuan Q, Zhonwei Z, Zengming Y, Haiying C, Ziqiang L (2015) A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe3 + and Cu2 + ions in aqueous solution. RSC Adv 5:6869–6878

    Article  CAS  Google Scholar 

  92. Wang W, Fu A, You J, Gao G, Lan J, Chen L (2010) Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron 66:3695–3701

    Article  CAS  Google Scholar 

  93. Kaur M, Choi DH (2014) Dual channel receptor based on diketopyrrolopyrrole alkyne conjugate for detection of Hg2+/Cu2 + by “naked eye” and fluorescence. Sens Actuators B Chem 190:542–548

    Article  CAS  Google Scholar 

  94. Qua L, Yin C, Huo F, Chao J, Zhang Y, Cheng F (2014) A pyridoxal-based dual chemosensor for visual detection of copperion and ratiometric fluorescent detection of zinc ion. Sens Actuators B Chem 191:158–164

    Article  CAS  Google Scholar 

  95. Liu SR, Wu SP, An (2011) NBD-based sensitive and selective fluorescent sensor for copper(II) ion. J Fluoresc 21:1599–1605

    Article  CAS  PubMed  Google Scholar 

  96. Goswami S, Sen D, Das NK, Hazra G (2010) Highly selective colorimetric fluorescence sensor for Cu2+: cation-induced ‘switching on’ of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra. Tetrahedron Lett 51:5563–5566

    Article  CAS  Google Scholar 

  97. Lan H, Liu B, Lv G, Li Z, Yu X, Liu K, Cao X, Yang H, Yang S, Yi T (2012) Dual-channel fluorescence “turn on” probe for Cu2+. Sens Actuators B Chem 173:811–816

    Article  CAS  Google Scholar 

  98. Reddy TS, Reddy AR (2014) 2-hexylaminoethylamidonaphthalimide as Cu2 + sensor. Spectrochim Acta A Mol Biomol Spectrosc 128:880–886

    Article  CAS  Google Scholar 

  99. Huang J, Xu Y, Qian X (2009) A colorimetric sensor for Cu2 + in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+-ligand interactions. Dalton Trans 1761–1766

  100. Wang W, Wen Q, Zhang Y, Fei X, Li Y, Yang Q, Xu X (2013) Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd2 + and Cu2 + in aqueous solution and living cells. Dalton Trans 42:1827–1833

    Article  CAS  PubMed  Google Scholar 

  101. Liu Z, Zhang C, Wang X, He W, Guo Z (2012) Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org Lett 14:4378–4381

    Article  CAS  PubMed  Google Scholar 

  102. Goswami S, Sen D, Das NK (2010) A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2 + with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett 12:856–859

    Article  CAS  PubMed  Google Scholar 

  103. Yu C, Zhang J, Copper (2014) (II)-responsive “off-on” chemosensor based on a naphthalimide derivative. Asian J Org Chem 3:1312–1316

    Article  CAS  Google Scholar 

  104. Lin WC, Wu CY, Liu ZH, Lin CY, Yen YP (2010) A new selective colorimetric and fluorescent sensor for Hg2 + and Cu2 + based on a thiourea featuring a pyrene unit. Talanta 81:1209–1215

    Article  CAS  PubMed  Google Scholar 

  105. Kim HJ, Park SY, Yoon S, Kim JS (2008) FRET-derived ratiometric fluorescence sensor for Cu2+. Tetrahedron 64:1294–1300

    Article  CAS  Google Scholar 

  106. Wang HF, Wu SP (2013) A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ions and its application in living cell imaging. Sens Actuators B Chem 181:743–748

    Article  CAS  Google Scholar 

  107. Bhorge YR, Tsai HT, Huang KF, Pape AJ, Janaki SN, Yen YP (2014) A new pyrene-based Schiff-base: a selective colorimetric and fluorescent chemosensor for detection of Cu(II) and Fe(III). Spectrochim Acta A Mol Biomol Spectrosc 130:7–12

    Article  CAS  PubMed  Google Scholar 

  108. Goswami S, Chakraborty S, Paul S, Halder S, Panja S, Mukhopadhyay SK (2014) A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application. Org Biomol Chem 12:3037–3044

    Article  CAS  PubMed  Google Scholar 

  109. Xie J, Menand M, Maisonneuve S, Metivier R (2007) Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J Org Chem 72:5980–5985

    Article  CAS  PubMed  Google Scholar 

  110. Zhang J, Luo J, Zhu XX, Junk M. J. N., Hinderberger D (2010) molecular pockets derived from cholic acid as chemosensors for metal ions. Langmuir 26:2958–2962

    Article  CAS  PubMed  Google Scholar 

  111. Wu SP, Wang TH, Liu SR (2010) A highly selective turn-on fluorescent chemosensor for copper(II) ion. Tetrahedron 66:9655–9658

    Article  CAS  Google Scholar 

  112. Zhou Y, Wang F, Kim Y, Kim SJ, Yoon J (2009) Cu2+-selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group. Org Lett 11:4442–4445

    Article  CAS  PubMed  Google Scholar 

  113. Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828

    Article  CAS  Google Scholar 

  114. Wang J, Long L, Xie D, Song X (2013) Cu2+-selective “Off–On” chemsensor based on the rhodamine derivative bearing 8-hydroxyquinoline moiety and its application in live cell imaging. Sens Actuators B Chem 177:27–33

    Article  CAS  Google Scholar 

  115. Gao C, Liu X, Jin X, Wu J, Xie Y, Liu W, Yao X, Tang Y (2013) A retrievable and highly selective fluorescent sensor for detecting copper and sulfide. Sens Actuators B Chem 185:125–131

    Article  CAS  Google Scholar 

  116. Singh P, Mittal LS, Kumar S, Bhargav G, Kumar S (2014) Perylene diimide appended with 8-hydroxyquinoline for ratiometric detection of Cu2 + ions and metal displacement driven “turn on” cyanide sensing. J Fluoresc 24:909–915

    Article  CAS  PubMed  Google Scholar 

  117. Tang L, Zhou P, Huang Z, Zhao J, Cai M (2013) New application of 2-(4-N-phenyl-3-thiosemicarbazone)-8-hydroxyquinoline as a sensor for relay recognition of Cu2 + and sulfide in aqueous solution. Bull Korean Chem Soc 34:2905–2908

    Article  CAS  Google Scholar 

  118. Jiang J, Jiang H, Tang X, Yang L, Dou W, Liu W, Fang R, Liu W (2011) An efficient sensor for Zn2 + and Cu2 + based on different binding modes. Dalton Trans 40:6367–6370

    Article  CAS  PubMed  Google Scholar 

  119. Zhou C, Xiao N, Li Y (2014) Simple quinoline-based “turn-on” fluorescent sensor for imaging copper (II) in living cells. Can J Chem 92:1092–1097

    Article  CAS  Google Scholar 

  120. Jo HY, Park GJ, Na YJ, Choi YW, You GR, Kim C (2014) Sequential colorimetric recognition of Cu2 + and CN – by asymmetric coumarin-conjugated naphthol groups in aqueous solution. Dyes Pigm 109:127–134

    Article  CAS  Google Scholar 

  121. Goswami S, Maity S, Das AK, Maity AC (2013) Single chemosensor for highly selective colorimetric and fluorometric dual sensing of Cu(II) as well as ‘NIRF’ to acetate ion. Tetrahedron Lett 54:6631–6634

    Article  CAS  Google Scholar 

  122. Huo J, Liu K, Zhao X, Zhang X, Wang Y (2014) Simple and sensitive colorimetric sensors for the selective detection of Cu2 + in aqueous buffer. Spectrochim Acta A Mol Biomol Spectrosc 117:789–792

    Article  CAS  PubMed  Google Scholar 

  123. Na YJ, Choi YW, Yun JY, Park KM, Chang PS, Kim C (2015) Dual-channel detection of Cu2+ and F with a simple Schiff-based colorimetric and fluorescent sensor. Spectrochim Acta A Mol Biomol Spectrosc 136:1649–1657

    Article  CAS  PubMed  Google Scholar 

  124. Wu SP, Huang ZM, Liu SR, Chung PK (2012) A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ion and its application in live cell imaging. J Fluoresc 22:253–259

    Article  CAS  PubMed  Google Scholar 

  125. Yadav UN, Pant P, Sahoo SK, Shankarling GS (2014) A novel colorimetric and fluorogenic chemosensor for selective detection of Cu2 + ions in mixed aqueous media. RSC Adv 4:42647–42653

    Article  CAS  Google Scholar 

  126. Basa PN, Sykes AG (2012) Differential sensing of Zn(II) and Cu(II) via two independent mechanisms. J Org Chem 77:8428 – 8434

    Article  CAS  PubMed  Google Scholar 

  127. Narayanaswamy N, Govindaraju T (2012) Aldazine-based colorimetric sensors for Cu2 + and Fe3+. Sens Actuators B Chem 161:304–310

    Article  CAS  Google Scholar 

  128. Lakshmi SS, Geetha K, Synthesis (2016) Crystal structure, and characterization of ternary copper(II) complex derived from N-(salicylidene)-L-valine. J Crystallogr. https://doi.org/10.1155/2016/6078543

    Google Scholar 

  129. Scott SM, Gordon KC, Burrell AK (1996) Spectroelectrochemical studies of copper(I) complexes with binaphthyridine and biquinoline ligands. Crystal structure determination of bis(6,7-dihydrodipyrido[2,3-b:3¢,2¢-j][1,10]phenanthroline)copper(I) tetrafluoroborate. Inorg Chem 35:2452–2457

    Article  CAS  PubMed  Google Scholar 

  130. Deschamps P, Kulkarni PP, Sarkar B (2003) The crystal structure of a novel copper(II) complex with asymmetric ligand derived from L-histidine. Inorg Chem 42:7366–7368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Rafiq, M., Hanif, M. et al. A Brief Review on Fluorescent Copper Sensor Based on Conjugated Organic Dyes. J Fluoresc 28, 97–165 (2018). https://doi.org/10.1007/s10895-017-2178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2178-z

Keywords

Navigation