Skip to main content
Log in

Luminous Insights: Exploring Organic Fluorescent “Turn-On” Chemosensors for Metal-Ion (Cu+2, Al+3, Zn+2, Fe+3) Detection

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

There are several metal ions that are vital for the growth of the environmental field as well as for the biological field but only up to the maximum limit. If they are present in excess, it could be hazardous for the human health. With the growing technology, a series of various detection techniques are employed in order to recognize those metal ions, some of them include voltammetry, electrochemical methods, inductively couples, etc. However, these techniques are expensive, time consuming, requires large storage, advanced instrumentation, and a skilled person to operate. So, here comes the need of a sensor and it is defined as a miniature device which detects the substance of interest by giving response in the form of energy change. So, from past few decades, many sensors have been formulated for detecting metal ions with some basic characteristics like selectivity, specificity, sensitivity, high accuracy, lower detection limit, and response time. Detecting various metal ions by employing chemosensors involves different techniques such as fluorescence, phosphorescence, chemiluminescence, electrochemical, and colorimetry. The fluorescence technique has certain advantages over the other techniques. This review mainly focuses on the chemosensors that show a signal in the form of fluorescence to detect Al+3, Zn+2, Cu+2, and Fe+3 ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 38

Similar content being viewed by others

Availability of Data and Materials

This is a review article so all the data and materials are drawn and collected from different journals. Also, copyright has been taken from the sources.

References

  1. Manjunath R, Kannan P (2018) Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion. Opt Mater 79:38–44. https://doi.org/10.1016/j.optmat.2018.03.021

    Article  CAS  Google Scholar 

  2. Ranee SJ, Sivaraman G, Pushpalatha AM, Muthusubramanian S (2018) Quinoline based sensors for bivalent copper ions in living cells. Sens Actuators B: Chem 255:630–637. https://doi.org/10.1016/j.snb.2017.08.111

    Article  CAS  Google Scholar 

  3. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16(1):63–75. https://doi.org/10.1023/A:1020718718550

    Article  PubMed  CAS  Google Scholar 

  4. Choi YW, You GR, Lee JJ, Kim C (2016) Turn-on fluorescent chemosensor for selective detection of Zn+2 in an aqueous solution: experimental and theoretical studies. Inorg Chem Commun 63:35–38. https://doi.org/10.1016/j.inoche.2015.11.012

    Article  CAS  Google Scholar 

  5. Shree GJ, Sivaraman G, Siva A, Chellappa D (2019) Anthracene- and pyrene-bearing imidazoles as turn-on fluorescent chemosensor for aluminum ion in living cells. Dyes Pigm 163:204–212. https://doi.org/10.1016/j.dyepig.2018.11.061

    Article  CAS  Google Scholar 

  6. Zhang J, She M, Li J, Wang C, Wang S, Liu P, Zhang S, Li J (2018) Substituent effect on fluorescence signaling of the naphthalene carbohydrazone based chemosensor: its implication in the detection of zn(II) ions and secondary sensing PPi. Sens Actuators B: Chem 270(February):362–370. https://doi.org/10.1016/j.snb.2018.05.049

    Article  CAS  Google Scholar 

  7. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8. https://doi.org/10.1042/EBC20150001

  8. Wang T, Zhang N, Bai W, Bao Y (2020) Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: two decades of progress. Polym Chem 11(18):3095–3114. https://doi.org/10.1039/D0PY00336K

    Article  CAS  Google Scholar 

  9. Lakowicz JR (2006) Principles of fluorescence spectroscopy, Third. Springer, New York, pp 443–475. https://doi.org/10.1039/D0PY00336K

    Google Scholar 

  10. Lee SA, Lee JJ, Shin JW, Min KS, Kim C (2015) A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes Pigm 116(Ii):131–138. https://doi.org/10.1016/j.dyepig.2015.01.020

    Article  CAS  Google Scholar 

  11. Idris AO, Mafa JP, Mabuba N, Arotiba OA (2017) Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russ J Electrochem 53(2):170–177. https://doi.org/10.1134/S1023193517020082

    Article  CAS  Google Scholar 

  12. Khataee A, Lotfi R, Hasanzadeh A (2017) A novel and sensitive chemosensor based on a KMnO4-rhodamine B-CdS quantum dot chemiluminescence system for meropenem detection. Photochem Photobiol Sci 16(2):170–177. https://doi.org/10.1039/c6pp00320f

    Article  PubMed  CAS  Google Scholar 

  13. Upadhyay PK, Marpu SB, Benton EN, Williams CL, Telang A, Omary MA (2018) A phosphorescent Trinuclear Gold(I) Pyrazolate Chemosensor for Silver Ion Detection and Remediation in Aqueous Media. Anal Chem 90(8):4999–5006. https://doi.org/10.1021/acs.analchem.7b04334

    Article  PubMed  CAS  Google Scholar 

  14. Khan SA (2020) Multi-step synthesis, photophysical and physicochemical investigation of novel pyrazoline a heterocyclic D- π -A chromophore as a fluorescent chemosensor for the detection of Fe+3 metal ion. J Mol Struct 1211

  15. Cao D, Zhu L, Liu Z, Lin W (2020) Through Bond Energy Transfer (TBET)-Based Fluorescent Chemosensors. J Photochem Photobiol C: Photochem Rev 100371. https://doi.org/10.1016/j.jphotochemrev.2020.100371

  16. Udhayakumari D, Inbaraj V (2020) A review on Schiff Base fluorescent chemosensors for cell imaging applications. J Fluoresc 30:1203–1223. https://doi.org/10.1007/s10895-020-02570-7

    Article  PubMed  CAS  Google Scholar 

  17. Carolina A, Men MC, Tomba JP, Silva LI, Arias H (2023) Chemosphere Microplastic levels on sandy beaches: are the effects of tourism and coastal recreation really important? 316. https://doi.org/10.1016/j.chemosphere.2023.137842

  18. Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu S-P, Lin M-C, Ohta N (2022) An AIEE active anthracene-based nanoprobe for Zn2+ and tyrosine detection validated by Bioimaging Studies. Chemosensors 10

  19. Huang W, Zhou Y, Zhao T et al (2022) The effects of copper ions and copper nanomaterials on the output of amino acids from marine microalgae. Environ Sci Pollut Res 29:9780–9791. https://doi.org/10.1007/s11356-021-16347-3

    Article  CAS  Google Scholar 

  20. Shirbhate ME, Jeong Y, Ko G, Baek G, Kim G, Kwon YU, Kim KM, Yoon J (2019) Selective fluorescent recognition of Zn2+ by using chiral binaphthol-pyrene probes. Dyes Pigm 167:29–35. https://doi.org/10.1016/j.dyepig.2019.03.063

    Article  CAS  Google Scholar 

  21. Gong X, Zhang H, Jiang N, Wang L, Wang G (2019) Oxadiazole-based ‘on-off’ fluorescence chemosensor for rapid recognition and detection of Fe+2 and Fe+3 in aqueous solution and in living cells. Microchem J 145(2018):435–43. https://doi.org/10.1016/j.microc.2018.11.011

  22. Kim G, Choi D, Kim CA, Benzothiazole-Based (2021) Fluorescence turn-on Sensor for copper(II). J Fluoresc 31:1203–1209. https://doi.org/10.1007/s10895-021-02752-x

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Cui Y, Bi C, Feng S, Yu F, Yuan E et al (2019) Oligo(ethylene glycol)-Functionalized Ratiometric fluorescent probe for the detection of Hydrazine in Vitro and in vivo. Anal Chem 91(11):7360–7365

    Article  PubMed  CAS  Google Scholar 

  24. Shellaiah M, Venkatesan P, Thirumalaivasan N, Wu S-P, Sun K-W (2023) Pyrene-based fluorescent probe for off-on-off sequential detection of Cu2+ and CN- with. HeLa Cells Imaging Chemosensors 11

  25. Galster S, Helmreich B (2022) Copper and zinc as Roofing Materials—A review on the occurrence and mitigation measures of Runoff Pollution. Water (Switzerland) 14. https://doi.org/10.3390/w14030291

  26. Yadav N, Gaikwad RP, Mishra V, Gawande MB (2022) Synthesis and photocatalytic applications of functionalized carbon quantum dots. Bull Chem Soc Jpn 95(11):1638–1679. https://doi.org/10.1246/bcsj.20220250

  27. Mishra V, Kumar R (2013) Uptake of hazardous heavy metal ions by aqueous solution of poly (acrylamide) prepared through atom transfer radical polymerization process. J Appl Polym Sci 128 (5):3295–3307. https://doi.org/10.1002/app.38521

  28. Tümay SO, Sarıkaya SY, Yeşilot S (2018) Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196(Iii):126–135. https://doi.org/10.1016/j.jlumin.2017.12.019

    Article  CAS  Google Scholar 

  29. Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M (2022) Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front Plant Sci 13:1–13. https://doi.org/10.3389/fpls.2022.1033092

    Article  Google Scholar 

  30. Worku AK (2022) Engineering techniques to dendrite free zinc-based rechargeable batteries. Front Chem 10:1–15. https://doi.org/10.3389/fchem.2022.1018461

    Article  CAS  Google Scholar 

  31. Ravichandiran P, Subramaniyan SA, Kim SY, Kim JS, Park BH, Shim KS et al (2019) Synthesis and anticancer evaluation of 1,4-Naphthoquinone derivatives containing a Phenylaminosulfanyl Moiety. ChemMedChem 14(5):532–544. https://doi.org/10.1002/cmdc.201900099

    Article  PubMed  CAS  Google Scholar 

  32. Çetindere S, Tümay SO, Şenocak A, Kılıç A, Durmuş M, Demirbaş E et al (2019) Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: synthesis, photophysical and spectroelectrochemical properties. Inorganica Chim Acta 494:132–140. https://doi.org/10.1016/j.ica.2019.05.022

    Article  CAS  Google Scholar 

  33. Ravichandiran P, Subramaniyan SA, Bella AP, Johnson PM, Kim AR, Shim KS et al (2019) Simple fluorescence Turn-On Chemosensor for selective detection of Ba2 + ion and its live cell imaging. Anal Chem 91(15):10095–10101. https://doi.org/10.1021/acs.analchem.9b02057

    Article  PubMed  CAS  Google Scholar 

  34. Jia P, Zhuang Z, Liu C, Wang Z, Duan Q, Li Z et al (2019) A highly specific and ultrasensitive p-aminophenylether-based fluorescent probe for imaging native HOCl in live cells and zebrafish. Anal Chim Acta 1052:131–136. https://doi.org/10.1016/j.aca.2018.11.031

    Article  PubMed  CAS  Google Scholar 

  35. Phapale D, Kushwaha A, Das D (2019) A simple benzimidazole styryl-based colorimetric chemosensor for dual sensing application. Spectrochim Acta - Part A Mol Biomol Spectrosc 214:111–118. https://doi.org/10.1016/j.saa.2019.02.009

    Article  CAS  Google Scholar 

  36. Azadbakht R, Hakimi M, Khanabadi J (2018) Fluorescent organic nanoparticles with enhanced fluorescence by self-aggregation and their application for detection of Fe3 + ions. New J Chem 42(8):5929–5936. https://doi.org/10.1039/C7NJ04343K

    Article  CAS  Google Scholar 

  37. Dwivedi R, Singh DP, Chauhan BS, Srikrishna S, Panday AK, Choudhury LH et al (2018) Intracellular application and logic gate behavior of a ‘turn off-on-off’ type probe for selective detection of Al3+ and F ions in pure aqueous medium. Sens Actuators B Chem 258:881–894. https://doi.org/10.1016/j.snb.2017.11.173

    Article  CAS  Google Scholar 

  38. Jonaghani MZ, Zali-Boeini H, Moradi H (2019) A coumarin based highly sensitive fluorescent chemosensor for selective detection of zinc ion. Spectrochim Acta - Part A Mol Biomol Spectrosc 207:16–22. https://doi.org/10.1016/j.saa.2018.08.061

    Article  CAS  Google Scholar 

  39. Hanulia T, Inami W, Ono A, Kawata Y (2018) Fluorescence lifetime measurement excited with ultraviolet surface plasmon resonance. Opt Commun 427(May):266–270. https://doi.org/10.1016/j.optcom.2018.06.069

    Article  CAS  Google Scholar 

  40. Volkova YA, Kozlov AS, Kolokolova MK, Uvarov DY, Gorbatov SA, Andreeva OE et al (2019) Steroidal N-Sulfonylimidates: synthesis and biological evaluation in breast cancer cells. Eur J Med Chem 179:694–706. https://doi.org/10.1016/j.ejmech.2019.06.048

    Article  PubMed  CAS  Google Scholar 

  41. Deng B, Ren M, Kong X, Zhou K, Lin W (2018) Development of an enhanced turn-on fluorescent HOCl probe with a large Stokes shift and its use for imaging HOCl in cells and zebrafish. Sens Actuators B Chem 255:963–969. https://doi.org/10.1016/j.snb.2017.08.146

    Article  CAS  Google Scholar 

  42. Venkatesan M, Sathiyanarayanan KI (2018) Highly selective chemosensor for the detection of Ru+3 ion by fluorescent turn-on response and its bioimaging recognition in living cells. Sens Actuators B Chem 267:373–380. https://doi.org/10.1016/j.snb.2018.03.077

    Article  CAS  Google Scholar 

  43. Fang M, Xia S, Bi J, Wigstrom TP, Valenzano L, Wang J et al (2018) A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells. Chem Commun 54(9):1133–1136. https://doi.org/10.1039/C7CC08986D

    Article  CAS  Google Scholar 

  44. Yang J, Liu X, Wang H, Tan H, Xie X, Zhang X et al (2018) A turn-on near-infrared fluorescence probe with aggregation-induced emission based on dibenzo[: a, c] phenazine for detection of superoxide anions and its application in cell imaging. Analyst 143(5):1242–1249. https://doi.org/10.1039/C7AN01860F

    Article  PubMed  CAS  Google Scholar 

  45. Yao D, Huang X, Guo F, Xie P (2018) A new fluorescent enhancement chemosensor for Al3+ and Fe3+ based on naphthyridine and benzothiazole groups. Sens Actuators B Chem 256:276–281. https://doi.org/10.1016/j.snb.2017.10.080

    Article  CAS  Google Scholar 

  46. Shyamal M, Maity S, Maity A, Maity R, Roy S, Misra A (2018) Aggregation induced emission based turn-off fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sens Actuators B Chem 263(Ii):347–359. https://doi.org/10.1016/j.snb.2018.02.130

    Article  CAS  Google Scholar 

  47. Taheri M, Ahour F, Keshipour S (2018) Sensitive and selective determination of Cu+2 at D-penicillamine functionalized nano-cellulose modified pencil graphite electrode. J Phys Chem Solids 117(2017):180–7. https://doi.org/10.1016/j.jpcs.2018.02.035

  48. Wang L, Li W, Zhi W, Huang Y, Han J, Wang Y et al (2018) A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: an application to bio-imaging. Sens Actuators B Chem 260:243–254. https://doi.org/10.1016/j.snb.2017.12.200

    Article  CAS  Google Scholar 

  49. Madhu P, Sivakumar P (2019) A novel pyridine-pyrazole based selective turn-off fluorescent chemosensor for Fe(III) ions. J Photochem Photobiol A Chem 371(Iii):341–348. https://doi.org/10.1016/j.jphotochem.2018.11.033

    Article  CAS  Google Scholar 

  50. Jain A, Wadhawan S, Kumar V, Mehta SK (2018) Colorimetric sensing of Fe+3 ions in aqueous solution using magnesium oxide nanoparticles synthesized using green approach. Chem Phys Lett 706:53–61. https://doi.org/10.1016/j.cplett.2018.05.069

    Article  CAS  Google Scholar 

  51. Wu C, Wang CZ, Zhu Q, Zeng X, Redshaw C, Yamato T (2018) Click synthesis of a quinoline-functionalized hexahomotrioxacalix[3]arene: a turn-on fluorescence chemosensor for Fe+3. Sens Actuators B Chem 254:52–58. https://doi.org/10.1016/j.snb.2017.07.048

    Article  CAS  Google Scholar 

  52. Warrier S, Kharkar PS (2018) Highly selective on-off fluorescence recognition of Fe+3 based on a coumarin derivative and its application in live-cell imaging. Spectrochim Acta - Part A Mol Biomol Spectrosc 188:659–665. https://doi.org/10.1016/j.saa.2017.07.068

    Article  CAS  Google Scholar 

  53. Qiu Y, Huang J, Jia L (2018) A Turn-On Fluorescent Sensor for Glutathione Based on Bovine Serum Albumin-Stabilized Gold Nanoclusters. Int J Anal Chem 2018. https://doi.org/10.1155/2018/1979684

  54. Zhang M, Gong L, Sun C, Li W, Chang Z, Qi D (2019) A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions. Spectrochim Acta - Part A Mol Biomol Spectrosc 214:7–13. https://doi.org/10.1016/j.saa.2019.01.089

    Article  CAS  Google Scholar 

  55. Kundu A, Anthony SP (2018) Triphenylamine based reactive coloro/fluorimetric chemosensors: structural isomerism and solvent dependent sensitivity and selectivity. Spectrochim Acta - Part A Mol Biomol Spectrosc 189:342–348. https://doi.org/10.1016/j.saa.2017.08.037

    Article  CAS  Google Scholar 

  56. Yadav N, Mudgal D, Mishra V (2023) In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection. Anal Chim Acta 341502. https://doi.org/10.1016/j.aca.2023.341502

  57. Guo Z, Niu Q, Li T, Sun T, Chi H (2019) A fast, highly selective and sensitive colorimetric and fluorescent sensor for Cu+2 and its application in real water and food samples. Spectrochim Acta - Part A Mol Biomol Spectrosc 213:97–103. https://doi.org/10.1016/j.saa.2019.01.044

    Article  CAS  Google Scholar 

  58. Guo Z, Niu Q, Li T (2018) Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence turn-on sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples. Spectrochim Acta - Part A Mol Biomol Spectrosc 200(2017):76–84. https://doi.org/10.1016/j.saa.2018.04.022

    Article  CAS  Google Scholar 

  59. Sun T, Li Y, Niu Q, Li T, Liu Y (2018) Highly selective and sensitive determination of Cu+2 in drink and water samples based on a 1,8-diaminonaphthalene derived fluorescent sensor. Spectrochim Acta - Part A Mol Biomol Spectrosc 195:142–147. https://doi.org/10.1016/j.saa.2018.01.058

    Article  CAS  Google Scholar 

  60. Niu Q, Sun T, Li T, Guo Z, Pang H (2018) Highly sensitive and selective colorimetric/fluorescent probe with aggregation induced emission characteristics for multiple targets of copper, zinc and cyanide ions sensing and its practical application in water and food samples. Sens Actuators B Chem 266:730–743. https://doi.org/10.1016/j.snb.2018.03.089

    Article  CAS  Google Scholar 

  61. Zhang S, Sun T, Xiao D, Yuan F, Li T, Wang E et al (2018) A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe+3 and its practical application. Spectrochim Acta - Part A Mol Biomol Spectrosc 189:594–600. https://doi.org/10.1016/j.saa.2017.09.001

    Article  CAS  Google Scholar 

  62. Xu Z, Jiang M, Zhang C, Mei J, Li Z, Xu S et al (2018) Highly selective and sensitive optical probe for Fe3+ based on a water-soluble squarylium dye. Anal Methods 10(20):2353–2359. https://doi.org/10.1039/C7AY02948A

    Article  CAS  Google Scholar 

  63. Maity P, Chaudhuri T, Mukhopadhyay CA, Facile (2018) Convenient and Catalyst-Free One-Pot Route to fluorescent Pyrrolo[3, 4-c]pyridines via Multicomponent Strategy in Aqueous Medium. ChemistrySelect 3(7):2080–2087. https://doi.org/10.1002/slct.201702677

    Article  CAS  Google Scholar 

  64. Mondal A, Naskar B, Goswami S, Prodhan C, Chaudhuri K, Mukhopadhyay C (2018) I2 catalyzed access of spiro[indoline-3,4′-pyridine] appended amine dyad: New ON-OFF chemosensors for Cu2+ and imaging in living cells. Org Biomol Chem 16(2):302–315. https://doi.org/10.1039/C7OB02651J

    Article  PubMed  CAS  Google Scholar 

  65. Mal K, Naskar B, Mondal A, Goswami S, Prodhan C, Chaudhuri K et al (2018) Dihydroindeno[1,2-: B] pyrroles: New Al3+ selective off-on chemosensors for bio-imaging in living HepG2 cells. Org Biomol Chem 16(32):5920–5931. https://doi.org/10.1039/C8OB01411F

    Article  PubMed  CAS  Google Scholar 

  66. Schiffman HRC, Balakrishna JD (2018) Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens Actuators B Chem 258:1191–1214. https://doi.org/10.1016/j.snb.2017.11.189

    Article  CAS  Google Scholar 

  67. Lee JS, Warkad SD, Shinde PB, Kuwar A, Nimse SB (2020) A highly selective fluorescent probe for nanomolar detection of ferric ions in the living cells and aqueous media. Arab J Chem 13(12):8697–8707. https://doi.org/10.1016/j.arabjc.2020.09.061

    Article  CAS  Google Scholar 

  68. Ding Y, Zhu WH, Xie Y (2017) Development of ion chemosensors based on porphyrin analogs. Chem Rev 117:2203–2256. https://doi.org/10.1021/acs.chemrev.6b00021

    Article  PubMed  CAS  Google Scholar 

  69. Mohammadi A, Yaghoubi S (2017) A new dual colorimetric chemosensor based on quinazolinone for CNˉ, AcOˉ and Cu2+ ions, Sens. Actuators B Chem 241:1069–1075. https://doi.org/10.1016/j.snb.2016.10.034

    Article  CAS  Google Scholar 

  70. Joo DH, Mok JS, Bae GH, Oh SE, Kang JH, Kim C (2017) Colorimetric detection of Cu2+ and fluorescent detection of PO43- and S2- by a multifunctional chemosensor. Ind Eng Chem Res 56:8399–8407. https://doi.org/10.1021/acs.iecr.7b01115

    Article  CAS  Google Scholar 

  71. Vaz FN, Fermino BL, Haskel MV, Wouk J, de Freitas GB, Fabbri R, Montagna E, Rocha JB, Bonini JS (2018) The relationship between copper, iron, and selenium levels and Alzheimer disease. Biol Trace Elem Res 181:185–191. https://doi.org/10.1007/s12011-017-1042-y

    Article  PubMed  CAS  Google Scholar 

  72. Zhang X, Wang Y, Wang SN, Chen QH, Tu YL, Yang XH, Chen JK, Yan JW, Pi RB, Wang Y (2018) Discovery of a novel multifunctional carbazoleaminoquinoline dimer for Alzheimer’s disease: copper selective chelation, anti-amyloid aggregation, and neuroprotection. Med Chem Res 27:777–784. https://doi.org/10.1007/s00044-017-2101-9

    Article  CAS  Google Scholar 

  73. Sun T, Niu Q, Li Y, Li T, Hu T, Wang E, Liu H (2018) A novel oligothiophene-based colorimetric and fluorescent turn on sensor for highly selective and sensitive detection of cyanide in aqueous media and its practical applications in water and food samples. Sens Actuators B Chem 258:64–71. https://doi.org/10.1016/j.snb.2017.11.095

    Article  CAS  Google Scholar 

  74. Lien CW, Unnikrishnan B, Harroun SG, Wang CM, Chang JY, Chang HT, Huang CC (2018) Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens Bioelectron 102:510–517. https://doi.org/10.1016/j.bios.2017.11.063

    Article  PubMed  CAS  Google Scholar 

  75. Chandra R, Ghorai A, Patra GK (2018) A simple benzildihydrazone derived colorimetric and fluorescent ‘oneoff-on’sensor for sequential detection of copper (II) and cyanide ions in aqueous solution, Sens. Actuators B Chem 255:701–711. https://doi.org/10.1016/j.snb.2017.08.067

    Article  CAS  Google Scholar 

  76. Mohammadi A, Khalili B, Saberi Haghayegh A (2019) A novel chromone based colorimetric sensor for highly selective detection of copper ions: synthesis, optical properties and DFT calculations. Spectrochim Acta A 222:117–193. https://doi.org/10.1016/j.saa.2019.117193

    Article  CAS  Google Scholar 

  77. Niu Q, Lan L, Li T, Guo Z, Jiang T, Zhao Z, Feng Z, Xi J (2018) A highly selective turn-on fluorescent and naked-eye colorimetric sensor for cyanide detection in food samples and its application in imaging of living cells, Sens. Actuators B Chem 276:13–22. https://doi.org/10.1016/j.snb.2018.08.066

    Article  CAS  Google Scholar 

  78. Mohammadi A, Kianfar M (2018) A simple colorimetric chemosensor with highly performance for detection of cyanide and copper ions and its practical application in real samples. J Photochem Photobiol A 367:22–31. https://doi.org/10.1016/j.jphotochem.2018.08.015

    Article  CAS  Google Scholar 

  79. Mi W, Qu Z, Sun J, Sun J, Zhang F, Ye K (2018) Luminescent non-traditional p-gels fabricated from pyrimidine derivatives bearing carbazole for the detection of acid vapors. Dyes Pigm 150:207–215. https://doi.org/10.1016/j.dyepig.2017.12.014

    Article  CAS  Google Scholar 

  80. Bai S, Liu S, Zhu Y, Wu Q (2018) Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett 59:3179–3183. https://doi.org/10.1016/j.tetlet.2018.07.020

    Article  CAS  Google Scholar 

  81. Joshi R (2018) Free radical-induced redox reactions of 2,4,6-triaminopyrimidine: a pulse radiolysis study. Radiat Phys Chem 151:169–178. https://doi.org/10.1016/j.radphyschem.2018.06.004

    Article  CAS  Google Scholar 

  82. Dalle KE, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E (2019) Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem Rev 119:2752–2875. https://doi.org/10.1021/acs.chemrev.8b00392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Li W, Gong X, Fan X, Yin S, Su D, Zhang X, Yuan L (2019) Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. Chin Chem Lett 30:1775–1790. https://doi.org/10.1016/j.cclet.2019.07.056

    Article  CAS  Google Scholar 

  84. Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin RM, Yin C (2019) Functional synthetic probes for selective targeting and multi-analyte detection and imaging. Chem Soc Rev 48:4155–4177. https://doi.org/10.1039/C8CS01006D

    Article  PubMed  CAS  Google Scholar 

  85. Gao P, Pan W, Li N, Tang B (2019) Fluorescent probes for organelle-targeted species imaging. Chem Sci 10:6035–6071. https://doi.org/10.1039/C9SC01652J

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kang Y-F, Niu L-Y, Yang Q-Z (2019) Fluorescent probes for detection of biothiols based on aromatic nucleophilic substitution-rearrangement mechanism. Chin Chem Lett 30:1791–1798. https://doi.org/10.1016/j.cclet.2019.08.013

    Article  CAS  Google Scholar 

  87. Liu X, Li N, Li M, Chen H, Zhang N, Wang Y, Zheng K (2020) Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coordin Chem Rev 404. https://doi.org/10.1016/j.ccr.2019.213109

    Article  CAS  Google Scholar 

  88. Li Y, Lan H, Yan X, Shi X, Liu X, Xiao S (2020) Retinal-based polyene fluorescent probe for selectively detection of Cu2+ in physiological saline and serum. Spectrochim Acta A 227. https://doi.org/10.1016/j.saa.2019.117565

    Article  CAS  Google Scholar 

  89. Saleh SM, Ali R, Ali IAI (2017) Spectrochim Acta A 183:225–231. https://doi.org/10.1007/s10570-022-04593-8

    Article  CAS  Google Scholar 

  90. Liao Z, Liu Y, Han SF, Wang D, Zheng JQ, Zheng XJ, Jin LP (2017) Sens Actuators B 244:914–921. https://doi.org/10.1016/j.snb.2017.01.074

    Article  CAS  Google Scholar 

  91. Lv D, Wang RX, Tang GS, Mou ZP, Lei JD, Han JQ, De Smedt S, Xiong RH, Huang CB (2019) Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavengin, and bactericidal activityg. ACS Appl Mater Interfaces 11:12880–12889. https://doi.org/10.1021/acsami.9b01508

    Article  PubMed  CAS  Google Scholar 

  92. Yang HQ, Liu SW, Cao LH, Jiang SH, Hou HQ (2018) Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J Mater Chem A 6:21216–21224. https://doi.org/10.1039/C8TA05109G

    Article  CAS  Google Scholar 

  93. Jiang SH, Han DH, Huang CB, Duan GG, Hou HQ (2018) Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater Lett 216:81–83. https://doi.org/10.1016/j.matlet.2017.12.146

    Article  CAS  Google Scholar 

  94. Gao LX, Deng CC, Xiong J, Zhu PP, Chen Q, Tan KJ (2019) A sensitive ratiometric fuorescence method for visual detection of aluminum ion based on chelation-enhanced photoluminescence. Microchem J 150:104096–104104. https://doi.org/10.1016/j.microc.2019.104096

    Article  CAS  Google Scholar 

  95. Zeng S, Li SJ, Liu TT, Sun XJ, Xing ZY (2019) A signifcant fuorescent turn-on chemosensor for Al3+ detection and application in real sample, logic gate and bioimaging. Inorg Chim Acta 495:118962–118970. https://doi.org/10.1016/j.ica.2019.118962

    Article  CAS  Google Scholar 

  96. Fu JX, Chang YX, Li B, Mei HH, Yang L, Xu KX (2019) A novel fuorescent-colorimetric probe for Al3+ and Zn2+ ion detection with diferent response and applications in F- detection and cell imaging. Analyst 144:5706–5716. https://doi.org/10.1039/C9AN01295H

    Article  PubMed  CAS  Google Scholar 

  97. Pang BJ, Li CR, Yang ZY (2018) Design of a colorimetric and turn-on fluorescent probe for the detection of Al (III). J Photochem Photobiol A: Chem 356:159–165. https://doi.org/10.1007/s10895-019-02374-4

    Article  CAS  Google Scholar 

  98. Wang DJ, Fan XP, Sun SG, Du SZ, Li HJ, Zhu JL, Tang YF, Chang MX, Xu YQ (2018) Substituent effect: a new strategy to construct a ratiometric fluorescent probe for detection of Al3+ and imaging in vivo. Sens Actuators B: Chem 264:304–311. https://doi.org/10.1016/j.snb.2018.03.017

    Article  CAS  Google Scholar 

  99. Ravichandiran P, Boguszewska-Czubara A, Masłyk M, Bella AP, Johnson PM, Subramaniyan SA, Shim KS, Yoo DJ (2020) A phenoxazine-based fluorescent chemosensor for dual channel detection of Cd2 + and CN – ions and its application to bioimaging in live cells and zebrafish. Dyes Pigm 172:107828. https://doi.org/10.1016/j.dyepig.2019.107828

    Article  CAS  Google Scholar 

  100. Mergu N, Kim M, Son YA (2018) A coumarin-derived Cu2+-fluorescent chemosensor and its direct application in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 188:571–580. https://doi.org/10.1016/j.saa.2017.07.047

    Article  PubMed  CAS  Google Scholar 

  101. Shen Y, Zhang X, Zhang C et al (2018) A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative, Spectrochim. Acta A Mol. Biomol Spectrosc 191:427–434. https://doi.org/10.1016/j.saa.2017.09.069

    Article  CAS  Google Scholar 

  102. Sun T, Niu Q, Li T et al (2018) A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~ 100% aqueous media and application to real samples. Spectrochim Acta A Mol Biomol Spectrosc 188:411–417. https://doi.org/10.1016/j.saa.2017.07.038

    Article  PubMed  CAS  Google Scholar 

  103. Zhu TC, Wang M, Qiu L, Hao S, Li K, Guo Z, He W (2018) A mitochondria -targeting fluorescent Fe3+ probe and its application in labile Fe3+ monitoring via imaging and flow cytometry. Dye Pigment 157:328–333. https://doi.org/10.1016/j.dyepig.2018.05.008

    Article  CAS  Google Scholar 

  104. Bai L, Xu Y, Li L, Tao F, Wang S, Wang L, Li G (2020) An efficient water-soluble fluorescent chemosensor based on furan Schiff base functionalized PEG for the sensitive detection of Al3+ in pure aqueous solution. New J Chem 44:11148–11154. https://doi.org/10.1039/d0nj01856b

    Article  CAS  Google Scholar 

  105. Kuzhandaivel H, Basha SB, Charles ID, Raju N, Singaravelu U, Sivalingam Nallathambi K (2021) Performance of 2-Hydroxy-1-Naphthaldehyde-2-Amino thiazole as a highly selective turn-on fluorescent Chemosensor for Al(III) Ions Detection and Biological Applications. J Fluoresc 31:1041–1053. https://doi.org/10.1007/s10895-021-02722-3

    Article  PubMed  CAS  Google Scholar 

  106. Kshirsagar N, Sonawane R, Patil P, Nandre J, Sultan P, Sehlangia S, Pradeep CP, Wang Y, Chen L (2020) Sahoo SK Fluorescent chemosensor for Al (III) based on chelation-induced fluorescence enhancement and its application in live cells imaging. Inorganica Chim Acta 511. https://doi.org/10.1016/j.ica.2020.119805

    Article  CAS  Google Scholar 

  107. Huang YY, Wang FX, Mu SY, Sun X, Li QZ, Xie CZ, Liu HB (2020) Highly selective and sensitive chemosensor for Al (III) based on isoquinoline Schiff base. Spectrochim Acta - Part A Mol Biomol Spectrosc 243. https://doi.org/10.1016/j.saa.2020.118754

  108. Yue X, Wang Z, Li C (2017) Yang Z yin Naphthalene-derived Al+3-selective fluorescent chemosensor based on PET and ESIPT in aqueous solution. Tetrahedron Lett 58:4532–4537. https://doi.org/10.1016/j.tetlet.2017.10.044

    Article  CAS  Google Scholar 

  109. Sun C, Miao X, Zhang L, Li W (2018) Chang Z Design and synthesis of a 2-hydroxy-1-naphthaldehyde -based fluorescent chemosensor for selective detection of aluminium ion. Inorganica Chim Acta 478:112–117. https://doi.org/10.1016/j.ica.2018.03.046

    Article  CAS  Google Scholar 

  110. Zeng S, Li SJ, Sun XJ, Li MQ, Xing ZY (2019) Li JL A benzothiazole-based chemosensor for significant fluorescent turn-on and ratiometric detection of Al+3 and its application in cell imaging. Inorganica Chim Acta 486:654–662. https://doi.org/10.1016/j.ica.2018.11.042

    Article  CAS  Google Scholar 

  111. Rangasamy M, Palaninathan K (2018) A pyrazoline-based fluorescent chemosensor for Al3+ ion detection and live cell imaging. New J Chem 42:10891–10897. https://doi.org/10.1039/c8nj01211c

    Article  CAS  Google Scholar 

  112. Lu W, Chen J, Shi J, Xu L, Yang S, Gao B (2021) A novel quinoline-based turn-on fluorescent probe for the highly selective detection of Al (III) and its bioimaging in living cells, plants tissues and zebrafish. J Biol Inorg Chem 26:57–66. https://doi.org/10.1007/s00775-020-01836-6

    Article  PubMed  CAS  Google Scholar 

  113. Farhi A, Firdaus F, Saeed H, Mujeeb A, Shakir M, Owais M (2019) A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions-a differential colorimetric approach. Photochemical and PhotobiologicalSciences 18(12):3008–3015. https://doi.org/10.1039/c9pp00247b

    Article  CAS  Google Scholar 

  114. More PA, Shankarling GS (2017) Reversible ‘turn off’ fluorescence response of Cu+2 ions towards 2-pyridyl quinoline based chemosensor with visible colour change. Sens Actuators B: Chem 241:552–559. https://doi.org/10.1016/j.snb.2016.10.121

    Article  CAS  Google Scholar 

  115. Patra GK, Chandra R, Ghorai A, Shrivas KK (2017) A highly selective benzildihydrazone based Schiff base chromogenic chemosensor for rapid detection of Cu2+ in aqueous solution. Inorg Chim Acta 462:315–322. https://doi.org/10.1016/j.ica.2017.04.013

    Article  CAS  Google Scholar 

  116. Arjunan S, Gopalan S, Selvaraj S, Thangaraj S, Krishna K, Nanjan B, Palathurai Subramaniam M (2018) A selective fluorescence Chemosensor: pyrene motif Schiff base derivative for detection of Cu+2 ions in living cells. J Photochem Photobiol A 364:424–432. https://doi.org/10.1016/j.jphotochem.2018.06.021

    Article  CAS  Google Scholar 

  117. Goel A, Tomer N, Ghule VD, Malhotra R (2021) A multi-responsive pyranone based Schiff base for the selective, sensitive and competent recognition of copper metalions. Spectrochimica Acta - PartA: Molecular and Biomolecular Spectroscopy 249:119221. https://doi.org/10.1016/j.saa.2020.119221

    Article  CAS  Google Scholar 

  118. Vashisht D, Sharma S, Kumar R, Saini V, Saini V, Ibhadon A, … Kataria R (2020) Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. Microchem J 155:104705. https://doi.org/10.1016/j.microc.2020.104705

  119. Xiao N, Zhang C (2019) Selective monitoring of Cu(II) with a fluorescence–on naphthalene–based probe in aqueous solution. Inorg Chem Commun 107(June). https://doi.org/10.1016/j.inoche.2019.107467

    Article  CAS  Google Scholar 

  120. Baslak C, Kursunlu AN (2018) A naked-eye fluorescent sensor for copper (II) ions based on a naphthalene conjugate bodipy dye. Photochem Photobiol Sci 17(8):1091–1097. https://doi.org/10.1039/c8pp00137e

    Article  PubMed  CAS  Google Scholar 

  121. Praikaew P, Maniam S, Charoenpanich A, Sirirak J, Promarak V, Langford SJ, Wanichacheva N (2019) Water-soluble Cu+2- fluorescent sensor based on core-substituted naphthalene diimide and its application in drinking water analysis and live cell imaging. J Photochem Photobiol A 382:111852. https://doi.org/10.1016/j.jphotochem.2019.05.015

    Article  CAS  Google Scholar 

  122. He Y, Yin J, Wang G (2018) New selective on-off fluorescence chemosensor based on carbazole Schiff base for Fe3+ detection. Chem Heterocycl Compd 54(2):146–152. https://doi.org/10.1007/s10593-018-2246-6

    Article  CAS  Google Scholar 

  123. Fahmi MRG, Fajar ATN, Roslan N, Yuliati L, Fadlan A, Santoso M, Lintang HO (2019) Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe. Open Chem 17(1):438–447. https://doi.org/10.1515/chem-2019-0053

    Article  CAS  Google Scholar 

  124. Yin ZY, Hu JH, Gui K, Fu QQ, Yao Y, Zhou FL, Ma LL, Zhang ZP (2020) AIE based colorimetric and turn-on fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J Photochem Photobiol A 396(March):112542. https://doi.org/10.1016/j.jphotochem.2020.112542

    Article  CAS  Google Scholar 

  125. Sciences TA-A (2017) A fluorescent film probe based on schiff base for determination of Fe3+ ions. Anadolu Univ J Sci Technol A: Appl Sci Eng 18(3):611–623. https://doi.org/10.18038/aubtda.292569

    Article  Google Scholar 

  126. Nanjan Bhuvanesh, Kuma PU, Pushparaj L, Suresh S, Thangadurai TD, Prabhu J, Nandhakumar R (2020) Benzene Linked Dipodal Naphthalene: Chemosensor with Colorimetric Enhancement and Fluorimetric quenching for Fe3+ ion and its application in live cell imaging. J Anal Chem 75(12):1554–1564. https://doi.org/10.1134/S1061934820120047

    Article  Google Scholar 

  127. Bhuvanesh N, Velmurugan K, Suresh S, Prakash P, John N, Murugan S, Thangadurai D, T., Nandhakumar R (2017) Naphthalene based fluorescent chemosensor for Fe3+-ion detection in microbes and real water samples. J Luminescence 188(May 2016):217–222. https://doi.org/10.1016/j.jlumin.2017.04.026

  128. Ravichandiran P, Boguszewska-Czubara A, Masłyk M, Bella AP, Subramaniyan SA, Johnson PM, Shim KS, Kim HG, Yoo DJ (2019) Naphthoquinone-Based colorimetric and fluorometric Dual-Channel Chemosensor for the detection of Fe2+ ion and its application in Bio-Imaging of Live cells and zebrafish. ACS Sustainable Chemistry and Engineering 7(20):17210–17219. https://doi.org/10.1021/acssuschemeng.9b03822

    Article  CAS  Google Scholar 

  129. Wang X, Li T (2020) A novel off-on rhodamine-based colorimetric and fluorescent chemosensor based on hydrolysis driven by aqueous medium for the detection of Fe+3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 229

  130. Zhou F, Leng TH, Liu YJ, Wang CY, Shi P, Zhu WH (2017) Water-soluble rhodamine-based chemosensor for Fe+3 with high sensitivity, selectivity and anti-interference capacity and its imaging application in living cells. Dyes Pigm 142:429–436. https://doi.org/10.1016/j.dyepig.2017.03.057

    Article  CAS  Google Scholar 

  131. Ghezelsefloo S, Keyvan Rad J, Hajiali M, Mahdavian AR (2021) Rhodamine-based fluorescent polyacrylic nanoparticles: a highly selective and sensitive chemosensor for Fe (II) and Fe (III) cations in water. J Environ Chem Eng 9(2). https://doi.org/10.1016/j.jece.2021.105082

    Article  CAS  Google Scholar 

  132. Chae JB, Yun D, Kim S, Lee H, Kim M, Lim MH, Kim KT, Kim C (2019) Fluorescent determination of zinc by a quinoline-based chemosensor in aqueous media and zebrafish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 219:74–82. https://doi.org/10.1016/j.saa.2019.04.044

    Article  PubMed  CAS  Google Scholar 

  133. Fu H, Liu H, Zhao L, Xiao B, Fan T, Jiang Y (2019) A quinoline-based selective ‘turn on’ chemosensor for zinc (II) via quad-core complex, and its application in live cell imaging. Tetrahedron 75(49). https://doi.org/10.1016/j.tet.2019.130710

    Article  CAS  Google Scholar 

  134. Wang JT, Pei YY, Yan MY, Li YG, Yang GG, Qu CH, Luo W, Wang J, Li QF (2021) A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem J 160. https://doi.org/10.1016/j.microc.2020.105776

    Article  CAS  Google Scholar 

  135. Chae JB, Lee H, Kim C (2020) Determination of Zinc Ion by a quinoline-based fluorescence Chemosensor. J Fluoresc 30(2):347–356

    Article  PubMed  CAS  Google Scholar 

  136. Patil M, Bothra S, Sahoo SK, Rather HA, Vasita R, Bendre R, Kuwar A (2018) Highly selective nicotinohydrazide based ‘turn-on’ chemosensor for the detection of bioactive zinc (II): its biocompitability and bioimaging application in cancer cells. Sens Actuators B: Chem 270(Ii):200–206. https://doi.org/10.1016/j.snb.2018.05.022

    Article  CAS  Google Scholar 

  137. Wang X, Ding G, Duan Y, Wang M, Zhu G, Li X, Zhang Y, Qin X (2020) Novel ‘naked-eye’ Bis-Schiff base fluorescent chemosensors for sensitive detection of Zn+2 and bio-imaging in living cells. Tetrahedron 76(16)

  138. Das B, Jana A, Mahapatra A, Das, Chattopadhyay D, Dhara A, Mabhai S, Dey S (2019) Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via ‘turn on’ response and its application in live cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 212:222–231. https://doi.org/10.1016/j.saa.2018.12.053

    Article  PubMed  CAS  Google Scholar 

  139. Azadbakht R, Koolivand M, Khanabadi J (2017) A new fluorescence chemosensor for Zn+2 with a remarkable red shift in emission spectra. Anal Methods 9(32):4688–4694. https://doi.org/10.1039/c7ay01568b

    Article  CAS  Google Scholar 

  140. Xu H, Chen W, Zhang W, Ju L, Lu H (2020) A selective purine-based fluorescent chemosensor for the naked-eye detection of zinc ions (Zn+2): applications in live cell imaging and test strips. New J Chem 44(35):15195–15201. https://doi.org/10.1039/d0nj02687e

    Article  CAS  Google Scholar 

  141. Peng H, Han Y, Lin N, Liu H (2019) Two pyridine-derived Schiff-bases as turn-on fluorescent sensor for detection of aluminium ion. Opt Mater 95. https://doi.org/10.1016/j.optmat.2019.109210

    Article  CAS  Google Scholar 

  142. Shylaja A, Roja SS, Priya RV, Kumar R (2018) Four-component Domino synthesis of Pyrazolo[3,4-h]quinoline-3-carbonitriles: turn-off fluorescent Chemosensor for Fe3 ions. J Org Chem 83(22):14084–14090. https://doi.org/10.1021/acs.joc.8b01991

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Authors are thankful to Amity University for all the support. There is no funding support related to this article.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and A.T. wrote the main manuscript text and prepared all the figures. K.R.R and V.M. have given the concept and reviewed the manuscript.

Corresponding authors

Correspondence to Kumar Rakesh Ranjan or Vivek Mishra.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliani, E., Taneja, A., Ranjan, K.R. et al. Luminous Insights: Exploring Organic Fluorescent “Turn-On” Chemosensors for Metal-Ion (Cu+2, Al+3, Zn+2, Fe+3) Detection. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03419-5

Keywords

Navigation