Skip to main content
Log in

Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel spectrofluorimetric probe based on Ag nanoparticle (AgNPs)-enhanced terbium (III) (Tb) fluorescence was introduced for the sensitive determination of folic acid (FA). The effect of gold and silver nanoparticles in different size was investigated on the well-known Tb sensitized fluorescence emission of 1, 10-phenantroline (Phen). The greatest fluorescence intensity was observed in the presence of AgNPs with a diameter of ~6 nm maybe due to their highest surface area. Furthermore, it’s discovered that FA can form Tb-Phen -FA ternary complexes and cause a notable diminution in this enhanced fluorescence system. Based on this finding, a high sensitive and selective method was developed for the determination of FA. Effects of various parameters like Ag NPs, Phen and Tb3+ concentration and pH of media were investigated. In the optimum circumstances, the fluorescence emission of AgNPs-Phen-Tb collection was declined linearly by increasing the concentration of FA in the range of 0.5 to 110 nmol L−1. Limits of detection and quantification were achieved to be 0.21 and 0.62 nmol  L−1, respectively. The method has good linearity, recovery, reproducibility and sensitivity, and was adequately exploited to follow FA content in pharmaceutical, fortified flour and human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao S, Yuan H, Xie C, Xiao D (2006) Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J Chromatogr A 1107(1):290–293

    Article  CAS  PubMed  Google Scholar 

  2. Nelson BC, Sharpless KE, Sander LC (2006) Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry. J Chromatogr A 1135(2):203–211

    Article  CAS  PubMed  Google Scholar 

  3. Group MVSR (1991) Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet 338(8760):131–137

    Article  Google Scholar 

  4. Geisel J (2003) Folic acid and neural tube defects in pregnancy: a review. J Perinat Neonatal Nurs 17(4):268–279

    Article  PubMed  Google Scholar 

  5. Zhu Z, Wu H, Wu S, Huang Z, Zhu Y, Xi L (2013) Determination of methotrexate and folic acid by ion chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube modified electrode. J Chromatogr A 1283:62–67

    Article  CAS  PubMed  Google Scholar 

  6. Bailey SW, Ayling JE (2013) Differential coulometric oxidation following post column-switching high pressure liquid chromatography for fluorescence measurement of unmetabolized folic acid in human plasma. J Chromatogr A 1315:86–91

    Article  CAS  PubMed  Google Scholar 

  7. Deconinck E, Crevits S, Baten P, Courselle P, De Beer J (2011) A validated ultra high pressure liquid chromatographic method for qualification and quantification of folic acid in pharmaceutical preparations. J Pharm Biomed Anal 54(5):995–1000

    Article  CAS  PubMed  Google Scholar 

  8. Chekin F, Teodorescu F, Coffinier Y, Pan G-H, Barras A, Boukherroub R, Szunerits S (2016) MoS 2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron. doi:10.1016/j.bios.2016.05.095

    PubMed  Google Scholar 

  9. Zhang D, Ouyang X, Ma W, Li L, Zhang Y (2016) Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanal 28:312–319

    Article  CAS  Google Scholar 

  10. Li X, Tan X, Yan J, Hu Q, Wu J, Zhang H, Chen X (2016) A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru(bpy)3 2+−doped silica nanocomposite modified electrode. Electrochim Acta 187:433–441

    Article  CAS  Google Scholar 

  11. Bahram M, Hoseinzadeh F, Farhadi K, Saadat M, Najafi-Moghaddam P, Afkhami A (2014) Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloids Surf A Physicochem Eng Asp 441:517–524

    Article  CAS  Google Scholar 

  12. Nagaraja P, Vasantha RA, Yathirajan HS (2002) Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol. Anal Biochem 307(2):316–321

    Article  CAS  PubMed  Google Scholar 

  13. Matias R, Ribeiro P, Sarraguça M, Lopes J (2014) A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal Methods 6(9):3065–3071

    Article  CAS  Google Scholar 

  14. Azizi SN, Shakeri P, Chaichi MJ, Bekhradnia A, Taghavi M, Ghaemy M (2014) The use of imidazolium ionic liquid/copper complex as novel and green catalyst for chemiluminescent detection of folic acid by Mn-doped ZnS nanocrystals. Spectrochim Acta A 122:482–488

    Article  CAS  Google Scholar 

  15. Wabaidur SM, Alam SM, Lee SH, Alothman ZA, Eldesoky GE (2013) Chemiluminescence determination of folic acid by a flow injection analysis assembly. Spectrochim Acta A 105:412–417

    Article  CAS  Google Scholar 

  16. Zhang B-T, Zhao L, Lin J-M (2008) Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt (II) system. Talanta 74(5):1154–1159

    Article  CAS  PubMed  Google Scholar 

  17. Hemmateenejad B, Shakerizadeh-shirazi F, Samari F (2014) BSA-modified gold nanoclusters for sensing of folic acid. Sens Actuat B-Chem 199:42–46

    Article  CAS  Google Scholar 

  18. Chakravarty S, Dutta P, Kalita S, Sarma NS (2016) PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sens Actuat B-Chem 232:243–250

    Article  CAS  Google Scholar 

  19. Chen Z, Wang J, Miao H, Wang L, Wu S, Yang X (2016) Fluorescent carbon dots derived from lactose for assaying folic acid. Sci China Chem 59:487–492

    Article  CAS  Google Scholar 

  20. Zhang Z-Q, Tang Y (2005) Solid-phase reactor flow-injection on-line oxidizing spectrofluorimetry for determination and dissolution studies of folic acid. Anal Bioanal Chem 381(4):932–936

    Article  CAS  PubMed  Google Scholar 

  21. Manzoori JL, Jouyban A, Amjadi M, Soleymani J (2011) Spectrofluorimetric determination of folic acid in tablets and urine samples using 1, 10-phenanthroline-terbium probe. Luminescence 26(2):106–111

    Article  CAS  PubMed  Google Scholar 

  22. Yu F, Cui M, Chen F, Gao Y, Wei J, Ding Y (2009) Highly sensitive spectrofluorimetric determination of trace amounts of folic acid using a oxytetracycline-terbium (iii) probe. Anal Lett 42(1):178–189

    Article  CAS  Google Scholar 

  23. Alam A-M, Kamruzzaman M, Lee S-H, Kim Y-H, Min K (2012) Europium-Enoxacin Complex as Fluorescence Probe for the Determination of Folic Acid in Pharmaceutical and Biological Samples. Bull Kor Chem Soc 33(9):3055–3060

    Article  CAS  Google Scholar 

  24. Leonard JP, Gunnlaugsson T (2005) Luminescent Eu (III) and Tb (III) complexes: developing lanthanide luminescent-based devices. J Fluoresc 15(4):585–595

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz-Medina A, Llorent-Martinez E, Ortega-Barrales P, Córdova MF-d (2011) Lanthanide-sensitized luminescence as a promising tool in clinical analysis. Appl Spectrosc Rev 46(7):561–580

    Article  CAS  Google Scholar 

  26. Motson GR, Fleming JS, Brooker S (2004) Potential applications for the use of lanthanide complexes as luminescent biolabels. Adv Inorg Chem 55:361–432

    Article  CAS  Google Scholar 

  27. Lotfi A, Manzoori JL (2016) Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine–terbium complex. Luminescence. doi:10.1002/bio.3114

    PubMed  Google Scholar 

  28. Abolhasani J, Naderali R, Hassanzadeh J (2016) Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox. Anal Sci 32(4):381–386

    Article  PubMed  Google Scholar 

  29. Alam A-M, Kamruzzaman M, Lee SH, Kim YH, Kim SY, Kim GM, Jo HJ, Kim SH (2012) Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchim Acta 176(1–2):153–161

    Article  CAS  Google Scholar 

  30. Kamruzzaman M, Alam A-M, Lee SH, Suh YS, Kim YH, Kim GM, Kim SH (2011) Method for determination of fluoroquinolones based on the plasmonic interaction between their fluorescent terbium complexes and silver nanoparticles. Microchim Acta 174(3–4):353–360

    Article  CAS  Google Scholar 

  31. Khan MN, Shah J, Jan MR, Lee SH (2013) A Validated Spectrofluorimetric Method for the Determination of Citalopram in Bulk and Pharmaceutical Preparations Based on the Measurement of the Silver Nanoparticles-Enhanced Fluorescence of Citalopram/Terbium Complexes. J Fluoresc 23(1):161–169

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Wabaidur SM, Alothman ZA, Alam SM (2011) Gold nanoparticles-based fluorescence enhancement of the terbium–levofloxacin system and its application in pharmaceutical preparations. Luminescence 26(6):768–773

    Article  CAS  PubMed  Google Scholar 

  33. Zhao HC, Ding F, Wang X, Ju H, Li A, Jin LP (2008) A study on silver nanoparticles-sensitized fluorescence and second-order scattering of the complexes of Tb (III) with ciprofloxacin and its applications. Spectrochim Part A 70(2):332–336

    Article  Google Scholar 

  34. Kamruzzaman M, Alam A-M, Kim KM, Lee SH, Suh YS, Kim YH, Kim SH, Oh SH (2012) Enhanced Luminescence of Lanthanide Complexes by Silver Nanoparticles for Ciprofloxacin Determination. J Nanosci Nanotechnol 12(7):6125–6130

    Article  CAS  PubMed  Google Scholar 

  35. Zisimopoulos EG, Tsogas GZ, Giokas DL, Kapakoglou NI, Vlessidis AG (2009) Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts. Talanta 79(3):893–899

    Article  CAS  PubMed  Google Scholar 

  36. Amjadi M, Hassanzadeh J, Manzoori JL (2014) Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles. Microchim Acta 181(15–16):1851–1856

    Article  CAS  Google Scholar 

  37. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58(1):3–7

    Article  CAS  PubMed  Google Scholar 

  38. Amjadi M, Manzoori JL, Hassanzadeh J, Sorouraddin MH (2013) Permanganate–bromide–silver nanoparticles as a new chemiluminescence system and its application to captopril determination. Talanta 115:600–605

    Article  CAS  PubMed  Google Scholar 

  39. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18(14):2005–2016

    Article  CAS  Google Scholar 

  40. Navarro JR, Werts MH (2013) Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138(2):583–592

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hassanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, R., lotfi, A., Bagheri, N. et al. Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence. J Fluoresc 26, 1875–1883 (2016). https://doi.org/10.1007/s10895-016-1882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1882-4

Keywords

Navigation