Skip to main content
Log in

Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It was recently reported that, besides UV irradiated polymerization, polymerization of diacetylene compounds could also been initiated by radicals generated from enzyme catalyzed hydrogen peroxide (H2O2) decomposition. A new optical sensing method for H2O2 was proposed based on this phenomenon. However, the sensitivity of this method is relatively lower than existed ones. In the present work, phenylboronic acid (PBA) functionalized 10, 12-pentacosadiynoic acid (PDA-PBA) was synthesized and its vesicles were formed successfully as colorimetric sensor for H2O2 detection. It was found that color change during the polymerization of vesicles composed of the PBA modified monomer is much stronger than that of the non-modified one. The response of PDA-PBA vesicles to H2O2 is 16 times more sensitive than that of the PDA. The absorption of PDA-PBA at 650 nm is linearly related to the concentration of H2O2 and a detection limit of ~5 μM could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Petlicki J, Palusova D, van de Ven TGM (2005) Physicochemical aspects of catalytic decomposition of hydrogen peroxide by manganese compounds. Ind Eng Chem Res 44:2002–2010. doi:10.1021/ie049595n

    Article  CAS  Google Scholar 

  2. Root R, Metcalf J, Oshino N, Chance B (1975) H2O2 release from human granulocytes during phagocytosis. I. documentation, quantitation, and some regulating factors. J Clin Investig 55:945–955. doi:10.1172/JCI108024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Stuart A. G. Evans, Joanne M. Elliott, Lynn M. Andrews, Philip N. Bartlett et al (2002) Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal Chem 74: 1322–1326. doi:10.1021/ac011052p

  4. Lei C-X, Hu S-Q, Shen G-L, Yu R-Q (2003) Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 59:981–988. doi:10.1016/S0039-9140(02)00641-0

    Article  PubMed  CAS  Google Scholar 

  5. He S, Shi W, Zhang X, Li J, et al (2010) β-cyclodextrins-based inclusion complexes of CoFe2O4 magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection. Talanta 82:377–383. doi:10.1016/j.talanta.2010.04.055

    Article  PubMed  CAS  Google Scholar 

  6. Han JH, Jang J, Kim BK, Choi HN, et al (2011) Detection of hydrogen peroxide with luminol electrogenerated chemiluminescence at mesoporous platinum electrode in neutral aqueous solution. J Electroanal Chem 660:101–107. doi:10.1016/j.jelechem.2011.06.012

    Article  CAS  Google Scholar 

  7. Pajor-Swierzy A, Kolasinska-Sojka M, Warszynski P (2014) The electroactive multilayer films of polyelectrolytes and Prussian blue nanoparticles and their application for H2O2 sensors. Colloid Polym Sci 292:455–465. doi:10.1007/s00396-013-3091-x

    Article  CAS  Google Scholar 

  8. Fan J, Bian X, Niu Y, Bai Y, et al (2013) Formation of three-dimensional Nano-porous silver films and application toward electrochemical detection of hydrogen peroxide. Appl Surf Sci 285:185–189. doi:10.1016/j.apsusc.2013.08.034

    Article  CAS  Google Scholar 

  9. Rismetov B, Ivandini TA, Saepudin E, Einaga Y (2014) Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam Relat Mater 48:88–95. doi:10.1016/j.diamond.2014.07.003

    Article  CAS  Google Scholar 

  10. Nakashima K, Wada M, Kuroda N, Akiyama S, et al (1994) High-performance liquid chromatographic determination of hydrogen peroxide with peroxyoxalate chemiluminescence detection. J Liq Chromatogr 17:2111–2126. doi:10.1080/10826079408013535

    Article  CAS  Google Scholar 

  11. Shiang YC, Huang CC, Chang HT (2009) Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem Commun 23:3437–3439. doi:10.1039/b901916b

    Article  Google Scholar 

  12. Kim JM, Lee YB, Yang DH, et al (2005) A polydiacetylene-based fluorescent sensor chip. J Am Chem Soc 127:17580–17581. doi:10.1021/ja0547275

    Article  PubMed  CAS  Google Scholar 

  13. Kolusheva S, Molt O, Herm M, et al (2005) Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles. J Am Chem Soc 127:10000–10001. doi:10.1021/ja052436q

    Article  PubMed  CAS  Google Scholar 

  14. Wu A, Yuan G, Tian H, Federici JF, et al (2014) Effect of alkyl chain length on chemical sensing of polydiacetylene and polydiacetylene/ZnO nanocomposites. Colloid Polym Sci 292:3137–3146. doi:10.1007/s00396-014-3365-y

    Article  CAS  Google Scholar 

  15. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279. doi:10.1021/cr100132y

    Article  PubMed  CAS  Google Scholar 

  16. Song YJ, Wei WL, Qu XG (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236. doi:10.1002/adma.201101853

    Article  PubMed  CAS  Google Scholar 

  17. Lu S, Jia C, Duan X, Zhang X, et al (2014) Polydiacetylene vesicles for hydrogen peroxide detection. Colloid Surf A 443:488–491. doi:10.1016/j.colsurfa.2013.11.029

    Article  CAS  Google Scholar 

  18. Wen F, Dong YH, Feng L, Wang S, et al (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196. doi:10.1021/ac1031447

    Article  PubMed  CAS  Google Scholar 

  19. Wu P, Cai Z, Chen J, Zhang H, et al (2011) Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids. Biosens Bioelectron 26:4012–4017. doi:10.1016/j.bios.2011.03.018

    Article  PubMed  CAS  Google Scholar 

  20. Tahir MN, André R, Sahoo JK, Jochum FD, et al (2011) Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorods. Nanoscale 3:3907–3914. doi:10.1039/c1nr10587f

    Article  PubMed  CAS  Google Scholar 

  21. Jonas U, Shah K, Norvez S, et al (1999) Reversible color switching and unusual solution polymerization of hydrazide-modified diacetylene lipids. J Am Chem Soc 121:4580–4588. doi:10.1021/ja984190d

    Article  CAS  Google Scholar 

  22. Niwa M, Shibahara S, Higashi N (2000) Diacetylenic monolayers containing a boronic acid moiety form a chemically and thermally stable poly(diacetylene) film on water. J Mater Chem 10:2647–2651. doi:10.1039/b004371k

    Article  CAS  Google Scholar 

  23. Lee J, Yarimaga O, Lee CH, Choi YK, et al (2011) Network polydiacetylene films: preparation, patterning, and sensor applications. Adv Funct Mater 21:1032–1039. doi:10.1002/adfm.201002042

    Article  CAS  Google Scholar 

  24. Reppy MA, Pindzola BA (2007) Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun 14(42):4317–4338. doi:10.1039/b703691d

    Article  Google Scholar 

  25. Evrard D, Touitou E, Kolusheva S, Fishov Y, et al (2001) A new colorimetric assay for studying and rapid screening of membrane penetration enhancers. Pharm Res 18:943–949. doi:10.1023/A:1010980009823

    Article  PubMed  CAS  Google Scholar 

  26. Su Y, Li J, Jiang L (2004) Effect of amphiphilic molecules upon chromatic transitions of polydiacetylene vesicles in aqueous solutions. Colloids Surf B: Biointerfaces 39:113–118. doi:10.1016/j.colsurfb.2003.12.005

    Article  PubMed  CAS  Google Scholar 

  27. Lee J, Jeong EJ, Kim J (2011) Selective and sensitive detection of melamine by intra/inter liposomal interaction of polydiacetylene liposomes. Chem Commun 47:358–360. doi:10.1039/c0cc02183k

    Article  CAS  Google Scholar 

  28. Lee SW, Kang CD, Yang DH, et al (2007) The development of a generic bioanalytical matrix using polydiacetylenes. Adv Funct Mater 17:2038–2044. doi:10.1002/adfm.200600398

    Article  CAS  Google Scholar 

  29. Guo CX, Boullanger P, Liu T, Jiang L (2005) Size effect of polydiacetylene vesicles functionalized with glycolipids on their colorimetric detection ability. J Phys Chem B 109:18765–18771. doi:10.1021/jp052580y

    Article  PubMed  CAS  Google Scholar 

  30. Schneider HJ, Tianjun L, Lomadze N (2004) Sensitivity increase in molecular recognition by decrease of the sensing particle size and by increase of the receptor binding site - a case with chemomechanical polymers. Chem Commun 21:2436–2437. doi:10.1039/b409331c

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation for Distinguished Young Scholars of China (No.21225626) and the Key Program of the National Natural Science Foundation of China (No.20936002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Tang, J., Lu, S. et al. Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group. J Fluoresc 26, 121–127 (2016). https://doi.org/10.1007/s10895-015-1691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1691-1

Keywords

Navigation