Skip to main content
Log in

The electroactive multilayer films of polyelectrolytes and Prussian blue nanoparticles and their application for H2O2 sensors

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Neff VD (1978) J Electrochem Soc 128:886

    Article  Google Scholar 

  2. Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225

    Article  CAS  Google Scholar 

  3. Rajan KP, Neff VD (1982) J Phys Chem 86:4361

    Article  CAS  Google Scholar 

  4. Itaya K, Akahoshi H, Toshima S (1982) J Am Chem Soc 129:1498

    CAS  Google Scholar 

  5. Itaya K, Uchida I, Toshima S (1984) J Electrochem Soc 131:2086

    Article  CAS  Google Scholar 

  6. Ohzuku T, Sawai K, Hurai T (1985) J Electrochem Soc 132:2828

    Article  CAS  Google Scholar 

  7. Mortimer RJ (1993) Chem Soc Rev 26:147

    Article  Google Scholar 

  8. Kaneko M, Hara S, Yamada A (1985) J Electroanal Chem 194:165

    Article  CAS  Google Scholar 

  9. Verdaguer M (1996) Science 272:698

    Article  CAS  Google Scholar 

  10. Liu X, Zweier JL (2001) Biol Med 31:894

    CAS  Google Scholar 

  11. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) Anal Lett 27:2861

    Article  CAS  Google Scholar 

  12. Karyakin AA, Karyakina EE, Gorton L (1996) Talanta 43:1597

    Article  CAS  Google Scholar 

  13. Jaffari SA, Pickup JC (1996) Biosens Bioelectron 11:1167

    Article  CAS  Google Scholar 

  14. Jaffari SA, Turner APF (1997) Biosens Bioelectron 12:1

    Article  CAS  Google Scholar 

  15. Gedanken A (2004) Ultrason Sonochem 11:47

    Article  CAS  Google Scholar 

  16. Zanfrognini B, Zanardi C, Terzi F, Ääritalo T, Viinikanoja A, Lukkari J, Seeber R (2011) J Solid State Electrochem 15:2395–2400

    Article  CAS  Google Scholar 

  17. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Adv Mater 22:1805–1825

    Article  CAS  Google Scholar 

  18. Hornok V, Dékány I (2007) J Colloid Interf Sci 309:176–182

    Article  CAS  Google Scholar 

  19. Fiorito PA, Goncales VR, Ponzio EA, Cordoba de Torresi SI (2005) Chem Commun 3:366

    Article  Google Scholar 

  20. Vaucher S, Li M, Mann S (2000) Angew Chem Int Ed Engl 39:1793

    Article  CAS  Google Scholar 

  21. Boyer A, Kalcher K, Pietsch R (1990) Electroanalysis 2:155

    Article  CAS  Google Scholar 

  22. Karyakin AA (2001) Electroanalysis 13:813

    Article  CAS  Google Scholar 

  23. Liu SQ, Ju HX (2002) Anal Biochem 307:110–116

    Article  CAS  Google Scholar 

  24. Guo YZ, Guadalupe AR, Resto O, Fonseca LF, Weisz SZ (1999) Chem Mater 11:135

    Article  CAS  Google Scholar 

  25. Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210:831

    Article  Google Scholar 

  26. Arys X, Laschewsky A, Jonas AM (2001) A Macromol 34:3318

    Article  CAS  Google Scholar 

  27. Ferreira N, Coche-Guérente L, Fatisson J, Lopez Tijelo M, Labbé P (2003) Chem Comm 16:2056

    Article  Google Scholar 

  28. Mayya K, Schoeler B, Caruso F (2003) Adv Funct Mater 13:183

    Article  CAS  Google Scholar 

  29. Krozer A, Nordin SA, Kasemo B (1995) Colloid Interf Sci 176:479

    Article  CAS  Google Scholar 

  30. Mammedov A, Kotov N (2001) Langmuir 16:5530

    Article  Google Scholar 

  31. Liu Y, Wang Y, Claus R (1997) Appl Phys Lett 71:2265

    Article  CAS  Google Scholar 

  32. Jaiswal A, Colins J, Agricole B, Delhaes P, Ravaine S (2003) J Colloid Interf Sci 261:330

    Article  CAS  Google Scholar 

  33. Wang G, Zhou J, Li J (2007) Biosens Bioelectron 22:2921

    Article  CAS  Google Scholar 

  34. Mao Y, Bao Y, Wang W, Li Z, LI F, Niu L (2011) Talanta 85:2106

    Article  CAS  Google Scholar 

  35. Wang L, Guo S, Hu X, Dong S (2008) Colloids Surf A Physicochem Eng Asp 317:394

    Article  CAS  Google Scholar 

  36. Wang O, Zhang L, Qiu L, Sun J, Shen J (2007) Langmuir 23:6084

    Article  CAS  Google Scholar 

  37. DeLongchamp DM, Hammond PT (2004) Chem Mater 16:4799

    Article  CAS  Google Scholar 

  38. Zhao W, Xu JJ, Shi CG, Chen HY (2005) Langmuir 21:9630

    Article  CAS  Google Scholar 

  39. Ernst A, Makowski O, Kowalewska B, Miecznikowski K, Kulesza PJ (2007) Bioelectrochem 71:23–28

    Article  CAS  Google Scholar 

  40. Lupo S, Lete C, Marin M, Totir N (2008) Rev Roumiane Chim 53:539–546

    Google Scholar 

  41. Lin M, Yang J, Cho M, Lee Y (2011) Macromol Res 19:673–678

    Article  CAS  Google Scholar 

  42. Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochim Acta 46:4065–4073

    Article  CAS  Google Scholar 

  43. Lupu S, Lakard B, Hihn JY, Dejeu J, Rougeot P, Lallemand S (2011) Thin Solid Films 519:7751

    Article  Google Scholar 

  44. Itaya K, Ataka T, Toshima S (1982) J Am Chem Soc 104:4767

    Article  CAS  Google Scholar 

  45. Elżbieciak M, Kolasińska M, Zapotoczny S, Krastev R, Nowakowska M, Warszyński P (2009) Colloids Surf A 343:89

    Article  Google Scholar 

  46. Baba A, Kaneko F, Advincula RC (2000) Colloids Surf A Physicochem Eng Asp 173:39

    Article  CAS  Google Scholar 

  47. Buron CC, Filiâtre C, Membrey F, Perrot H, Foissy A (2006) J Colloid Interface Sci 296:409

    Article  CAS  Google Scholar 

  48. Keller CA, Kasemo B (1998) Biophys J 75:1397

    Article  CAS  Google Scholar 

  49. Höök F, Rodahl M, Kasemo B, Brzezinski P (1998) Proc Natl Acad Sci U S A 95:12271

    Article  Google Scholar 

  50. Sauerbrey GZ (1959) Physica 155:206

    CAS  Google Scholar 

  51. Kolasińska M, Krastev R, Warszyński P (2007) J Colloid Interface Sci 46:305

    Google Scholar 

  52. Kolasińska M, Warszyński P (2005) Appl Surf Sci 252:759

    Article  Google Scholar 

  53. Itaya K, Uchida I, Toshima S (1983) J Phys Chem 87:105

    Article  CAS  Google Scholar 

  54. Itaya K, Shibayama K, Akahoshi H, Toshima S (1982) J Appl Phys Chem 53:804

    Article  CAS  Google Scholar 

  55. Itaya K, Ataka T, Toshima S, Shinohara T (1982) J Phys Chem 86:2415

    Article  CAS  Google Scholar 

  56. Abbaspour A, Kamyabi MA (2005) J Electroanal Chem 584:119

    Article  Google Scholar 

  57. Ricci F, Goncalves C, Amine A, Gorton L, Palleschi G, Moscone D (2003) Electroanalysis 15:1204–1211

    Article  CAS  Google Scholar 

  58. Bard AJ, Parsons R, Jordan J (1979) Standard potentials in aqueous solution. IUPAC recommendations. IUPAC, Zürich, p 56

    Google Scholar 

  59. Malinauskas A, Araminaitė R, Mickevičiūtė G, Garjonytė R (2004) Mater Sci Eng C 24:513

    Article  Google Scholar 

  60. Karyakin AA, Karyakina EE, Gorton L (1999) Electrochem Commun 1:78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00 and by the HOMING PLUS Programme co-financed by the Foundation for Polish Science, as part of the Innovative Economy Operational Programme 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pajor-Świerzy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajor-Świerzy, A., Kolasińska-Sojka, M. & Warszyński, P. The electroactive multilayer films of polyelectrolytes and Prussian blue nanoparticles and their application for H2O2 sensors. Colloid Polym Sci 292, 455–465 (2014). https://doi.org/10.1007/s00396-013-3091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3091-x

Keywords

Navigation