Skip to main content
Log in

Towards the Understanding of the Melting Heat Transfer in a Cu–Water Nanofluid Flow

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the melting heat on the hydromagnetic convective Cu–H2O nanofluid flow over a stretching plate was investigated. The effects of viscous dissipation and Joule heating, involved in the energy equation, were considered. The primary equations were reduced to the ordinary differential equations with the use of suitable similarity transforms. The reduced equations were solved using the shooting technique by the fourth-order Runge– Kutta scheme. A detailed investigation is exemplified by diagrams and tables for various values of opposite factors. The results of calculations were compared with the corresponding literature data obtained for specific situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128, 240–250 (2006).

    Article  Google Scholar 

  2. S. Kakac and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52, 3187–3196 (2009).

    Article  MATH  Google Scholar 

  3. W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf., 53, 2477–2483 (2010).

    Article  MATH  Google Scholar 

  4. R. A. Van Gorder, Nano boundary layers over stretching surfaces, Commun. Nonlin. Sci. Numer. Simulat., 15, 1494–1500 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Hassan et al., An analytical solution for boundary layer flow of a nanofluid past a stretching sheet, Int J. Therm. Sci., 50, 2256–2263 (2011).

    Article  Google Scholar 

  6. M. A. A. Hamad, Analytical solution of natural convection flow of a nanofluid over a linear stretching sheet in the presence of magnetic field, Int. Commun. Heat Mass Transf., 38, 487–492 (2011).

    Article  Google Scholar 

  7. F. M. Hady et al., Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet, Nanoscale Res. Lett., 7, 229–231 (2012).

    Article  Google Scholar 

  8. P. K. Kameswaran, M. Narayana, P. Sibanda, and P. V. S. N. Murthy, Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction, Int. J. Heat Mass Transf., 55, 7587–7595 (2012).

    Article  Google Scholar 

  9. A. V. Kuznetsov and D. A. Nield, The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid: A revised model, Int. J. Heat Mass Transf., 65, 682–685 (2013).

    Article  Google Scholar 

  10. D. A. Nield and A. V. Kuznetsov, The onset of convection in a horizontal nanofluid layer of finite depth: A revised model, Int. J. Heat Mass Transf., 77, 915–918 (2014).

    Article  Google Scholar 

  11. N. A. Halim, S. Sivasankaran, and N. F. M. Noor, Active and passive controls of the Williamson stagnation nanofluid flow over a stretching/shrinking surface, Neural Comput. Appl., 28, 1023–1033 (2017); https://doi.org/10.1007/s00521-016-2380-y.

    Article  Google Scholar 

  12. S. S. Giri, K. Das, and P. K. Kundu, Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux, Eur. Phys. J. Plus., 132, Article ID 101 (2017).

  13. T. Hayat, Z. Hussain, A. Alsaedi, and S. Asghar, Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness, Adv. Powder Technol., 27, No. 4, 1677–1688 (2016); https://doi.org/10.1016/j.apt.2016.06.001.

    Article  Google Scholar 

  14. T. Hayat, T. Muhammad, S. A. Shehzad, and A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption, Int. J. Therm. Sci., 111, 274–288 (2017).

    Article  Google Scholar 

  15. K. Das, A. Sarkar, and P. K. Kundu, Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation, J. Siber. Federal Univ., Math. Phys., 10, 146–157 (2017).

    Article  MATH  Google Scholar 

  16. R. Ellahi, S. A. Alamri, A. Basit, and A. Majeed, Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation, J. Taibah Univ. Sci., 12, 476–482 (2018).

    Article  Google Scholar 

  17. M. Hussan, M. Marin, A. Alsharif, and R. Ellahi, Convection heat transfer flow of nanofluid in a porous medium over wavy surface, Phys. Lett., 382, 2749–2753 (2018).

    Article  MathSciNet  Google Scholar 

  18. Y. C. Yen and C. Tien, Laminar heat transfer over a melting plate, the modified Leveque problem, J. Geophys. Res., 68, 3673–3678 (1963).

    Article  Google Scholar 

  19. C. Tien and Y. C. Yen, The effect of melting on forced convection heat transfer, J. Appl. Meteorol., 4, 523–527 (1965).

    Article  Google Scholar 

  20. S. K. Adegbie, O. K. Koriko, and I. L. Animasaun, Melting heat transfer effects on stagnation point flow of micropolar fluid with variable dynamic viscosity and thermal conductivity at constant vortex viscosity, J. Nigerian Math. Soc., 35, No. 1, 34–47 (2016); https://doi.org/10.1016/j.jnnms.2015.06.004.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Das and A. Sarkar, Eff ect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation, J. Appl. Mech. Tech. Phys., 57, 681–689 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Hayat, A. Kiran, M. Imtiaz, and A. Alsaedi, Melting heat and thermal radiation effects in stretched flow of an Oldroyd-B fluid, App. Math. Mech., 38, 957–968 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Mabood and K. Das, Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation, Heliyon, 5, Article ID 1216 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Das.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 5, pp. 1225–1231, September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K. Towards the Understanding of the Melting Heat Transfer in a Cu–Water Nanofluid Flow. J Eng Phys Thermophy 95, 1207–1213 (2022). https://doi.org/10.1007/s10891-022-02587-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02587-8

Keywords

Navigation