Skip to main content
Log in

Active and passive controls of the Williamson stagnation nanofluid flow over a stretching/shrinking surface

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A steady stagnation point flow of an incompressible Williamson nanofluid towards a horizontal linearly stretching/shrinking sheet with active and passive controls on the wall mass flux is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation and are solved using the bvp4c package in MATLAB. The velocity, temperature and nanoparticle volume fraction profiles together with the reduced skin friction coefficient, reduced Nusselt number and reduced Sherwood number are graphically presented to visualize the effects of parameters involved in the study. Results show that temperature and nanoparticle volume fraction are decreasing functions of the stagnation parameter, r. It is also found that the diffusivity ratio \(N_{\mathrm{bt}}\) and Lewis number Le have almost negligible effects on heat transfer rate in passive control. Increasing value of Williamson parameter \(\lambda\) will increase the skin friction in both stretching and shrinking surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akbar NS, Nadeem S, Lee C, Khan ZH, Haq RU (2013) Numerical study of Williamson nano fluid flow in an asymmetric channel. Results Phys 3:161–166

    Article  Google Scholar 

  2. Nandy SK, Pop I (2014) Effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface. Int Commun Heat Mass Transf 53:50–55

    Article  Google Scholar 

  3. Khan WA, Makinde OD, Khan ZH (2014) MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int J Heat Mass Transf 74:285–291

    Article  Google Scholar 

  4. Ul Haq R, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E 65:17–23

    Article  Google Scholar 

  5. Mustafa M, Khan JA, Hayat T, Alsaedi A (2015) Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. Int J Nonlinear Mech 71:22–29

    Article  Google Scholar 

  6. Mohyud-din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522

    Article  Google Scholar 

  7. Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J Taiwan Inst Chem Eng 56:6–15

    Article  Google Scholar 

  8. Sheikholeslami M, Rashidi MM, Ganji DD (2015) Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid. Comput Methods Appl Mech Eng 294:299–312

    Article  Google Scholar 

  9. Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci 87:136–145

    Article  Google Scholar 

  10. Garoosi F, Jahanshaloo L, Rashidi MM, Ali ME-S (2015) Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl Math Comput 254:183–203

    MathSciNet  Google Scholar 

  11. Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.1007/s00521-015-2035-4

    Google Scholar 

  12. Khan U, Mohyud-Din ST, Mohsin B (2016) Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheet saturated by a porous medium. Aerosp Sci Technol 50:196–203

    Article  Google Scholar 

  13. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  14. Kuznetsov AV, Nield DA (2013) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transf 65:682–685

    Article  Google Scholar 

  15. Nield DA, Kuznetsov AV (2014) The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int J Heat Mass Transf 77:915–918

    Article  Google Scholar 

  16. Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129

    Article  Google Scholar 

  17. Nield DA, Kuznetsov AV (2014) Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transf 68:211–214

    Article  Google Scholar 

  18. Rahman MM, Rosca AV, Pop I (2014) Boundary layer flow of a nanofluid apst a permeable exponentially shrinking/stretching surface with second order slip using Buongiornos model. Int J Therm Sci 77:1133–1143

    Google Scholar 

  19. Mustafa M, Khan JA, Hayat T, Alsaedi A (2015) Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition. IEEE Trans Nanotechnol 14(1):159–168

  20. Dhanai R, Rana P, Kumar L (2015) Multiple solutions of MHD boundary layer flow and heat transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet with viscous dissipation. Powder Technol 273:62–70

    Article  Google Scholar 

  21. Hiemenz K (1911) Dei Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dingl Polytech J 32:321–410

    Google Scholar 

  22. Ishak A, Nazar R, Arifin NM, Pop I (2007) Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet. Malays J Math Sci 1(2):217–226

    Google Scholar 

  23. Mustafa M, Hayat T, Pop I, Asghar S, Obaidat S (2011) Stagnation-point flow of a nanofluid towards a stretching sheet. Int J Heat Mass Tranf 54:5588–5594

    Article  MATH  Google Scholar 

  24. Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Commun Nonlinear Sci Numer Simul 17:4210–4223

    Article  MathSciNet  MATH  Google Scholar 

  25. Bachok N, Ishak A, Pop I (2013) Stagnation point flow toward a stretching/shrinking sheet with a convective surface boundary condition. J Frankl Inst 350:2736–2744

    Article  MathSciNet  MATH  Google Scholar 

  26. Akbar NS, Khan ZH, Nadeem S (2014) The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J Mol Liq 196:21–25

    Article  Google Scholar 

  27. Khan U, Ahmed N, Khan SIU, Mohyud-din ST (2014) Thermo-diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid. Propuls Power Res 3:151–158

    Article  Google Scholar 

  28. Hayat T, Asad S, Mustafa M, Alsaedi A (2015) MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Comput Fluids 108:179–185

    Article  MathSciNet  Google Scholar 

  29. Sajid M, Ahmed B, Abbas Z (2015) Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet. J Egypt Math Soc 23:440–444

    Article  MathSciNet  MATH  Google Scholar 

  30. Noor NFM, Ul Haq R, Nadeem S, Hashim I (2015) Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8):2007–2022

    Article  MathSciNet  Google Scholar 

  31. Williamson RV (1929) The flow of pseudoplastic materials. Ind Eng Chem Res 21(11):1108

    Article  Google Scholar 

  32. Nadeem S, Akram S (2010) Peristaltic flow of a Williamson fluid in an asymmetric channel. Commun Nonlinear Sci Numer Simul 15:1705–1716

    Article  MathSciNet  MATH  Google Scholar 

  33. Akbar NS, Hayat T, Nadeem S, Obaidat S (2012) Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. Int J Heat Mass Transf 55:1855–1862

    Article  Google Scholar 

  34. Ellahi R, Riaz A, Nadeem S (2013) Three dimensional peristaltic flow of Williamson fluid in a rectangular duct. Indian J Phys 87(12):1275–1281

    Article  Google Scholar 

  35. Khan NA, Khan S, Riaz F (2014) Boundary layer flow of Williamson fluid with chemically reactive species using scaling transformation and homotopy analysis method. Math Sci Lett 3(3):199–205

    Article  Google Scholar 

  36. Zehra I, Yousaf MM, Nadeem S (2015) Numerical solutions of Williamson fluid with pressure dependent viscosity. Results Phys 5:20–25

    Article  Google Scholar 

  37. Eldabe NT, Elogail MA, Elshaboury SM, Hasan AA (2015) Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer. Math Model Appl. doi:10.1016/j.apm.2015.04.043

    Google Scholar 

  38. Nadeem S, Hussain ST, Lee C (2013) Flow of a Williamson fluid over a stretching sheet. Braz J Chem Eng 30(3):619–625

    Article  Google Scholar 

  39. Nadeem S, Hussain ST (2014) Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl Math Mech 35(4):489–502

    Article  MathSciNet  MATH  Google Scholar 

  40. Nadeem S, Hussain ST (2014) Flow and heat transfer analysis of Williamson nanofluid. Appl Nanosci 4:1005–1012

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by Ministry of Higher Education Malaysia under research grant FRGS/1/2015/SG04/UM/02/1 (FP016-2015A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. M. Noor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, N.A., Sivasankaran, S. & Noor, N.F.M. Active and passive controls of the Williamson stagnation nanofluid flow over a stretching/shrinking surface. Neural Comput & Applic 28 (Suppl 1), 1023–1033 (2017). https://doi.org/10.1007/s00521-016-2380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2380-y

Keywords

Navigation