Skip to main content
Log in

Analysis of the Efficiency of Combined Barrier Strips for Localizing the Burning of Needles and Leafage

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The effectiveness of the use of combined barrier strips consisting of moistened forest combustible material for extinguishing a forest fi re depending on the speed of air flow over it has been studied. To moisten the forest combustible material, use was made of water, an emulsion from a foam generator, a bentonite suspension, a bischofite solution, and an OS-5 solution. Optimal combinations of the strips of needles and foliage, moistened with the indicated liquids, with the minimum consumption of the latter, that exclude the increase in the combustion site area have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fuentes and J. L. Consalvi, Experimental study of the burning rate of small-scale forest fuel layers, Int. J. Therm. Sci., 74, 119–125 (2013).

    Article  Google Scholar 

  2. A. M. Eritsov and V. G. Gusev, Improving the technologies of creating barrier and support strips in case of quenching forest fires in areas of forest aviation operations, Vestn. Povolzhsk. Gos. Tekhnol. Univ., 1, 42–56 (2016).

    Google Scholar 

  3. V. Fateev, M. Agafontsev, A. Filkov, and S. Volkov, Determination of smoldering time and thermal characteristics of firebrands under laboratory conditions, Fire Safety J., 91, 791–799 (2017).

    Article  Google Scholar 

  4. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental determination of the fire-break size and specific water consumption for effective containment and complete suppression of the front propagation of a typical local wildfire, J. Appl. Mech. Tech. Phys., 60, No. 1, 1–12 (2019).

    Article  MathSciNet  Google Scholar 

  5. I. S. Voitkov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and V. E. Nakoryakov, Physicochemical processes in the interaction of aerosol with the combustion front of forest fuel materials, J. Appl. Mech. Tech. Phys., 59, 891–902 (2018).

    Article  Google Scholar 

  6. R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Suppression of the thermal decomposition reaction of forest combustible materials in large-area fi res, J. Eng. Phys. Thermophys., 91, No. 2, 411–419 (2018).

    Article  Google Scholar 

  7. A. O. Zhdanova, R. S. Volkov, I. S. Voytkov, K. Yu. Osipov, and G. V. Kuznetsov, Suppression of forest fuel thermolysis by water mist, Int. J. Heat Mass Transf., 126, 703–714 (2018).

    Article  Google Scholar 

  8. O. P. Korobeinichev, A. A. Paletsky, M. V. Gonchikzhapov, I. K. Shundrina, H. Chen, and N. Liu, Combustion chemistry and decomposition kinetics of forest fuels, Procedia Eng., 62, 182–193 (2013).

    Article  Google Scholar 

  9. O. P. Korobeinichev, A. G. Shmakov, A. A. Chernov, T. A. Bol'shova, V. M. Shvartsberg, K. P. Kutsenogii, and V. I. Makarov, Fire suppression by aerosols of aqueous solutions of salts, Combust. Explos. Shock Waves, 46, 16–20 (2010).

    Article  Google Scholar 

  10. A. M. Grishin and A. I. Filkov, A deterministic-probabilistic system for predicting forest fire hazard, Fire Safety J., 46, 56–62 (2011).

    Article  Google Scholar 

  11. O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov, Fire suppression by low-volatile chemically active fi re suppressants using aerosol technology, Fire Safety J., 51, 102–109 (2012).

    Article  Google Scholar 

  12. C. Anand, B. Shotorban, S. Mahalingam, S. McAllister, and D. R. Weise, Physics-based modeling of live wildland fuel ignition experiments in the forced ignition and flame spread test apparatus, Combust. Sci. Technol., 189, 1551–1570 (2017).

    Article  Google Scholar 

  13. I. V. Bartenev, S. V. Malyukov, M. A. Gnusov, and D. S. Stupnikov, Study of efficiency of soil-thrower and fire-break majer on the basis of mathematic simulation, Int. J. Mech. Eng. Technol., 9, 1008–1018 (2018).

    Google Scholar 

  14. C. R. Barefoot, K. G. Willson, J. L. Hart, C. J. Schweitzer, and D. C. Dey, Effects of thinning and prescribed fi re frequency on ground flora in mixed Pinus-hardwood stands, Forest Ecology Manage., 432, 729–740 (2019).

    Article  Google Scholar 

  15. E.-S. R. Negeed, N. Ishihara, K. Tagashira, S. Hidaka, M. Kohno, and Y.Takata, Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet, Int. J. Therm. Sci., 49, 2250–2271 (2010).

    Article  Google Scholar 

  16. Y. Sheng, S. Lu, M. Xu, X. Wu, and C. Li, Eff ect of xanthan gum on the performance of aqueous fi lm-forming foam, J. Dispers. Sci. Technol., 37, 1664–1670 (2016).

    Article  Google Scholar 

  17. Y. Sheng, N. Jiang, S. Lu, and C. Li, Fluorinated and fl uorine-free firefighting foams spread on heptane surface, Colloids Surf. A: Physicochem. Eng. Aspects, 552, 1–8 (2018).

    Article  Google Scholar 

  18. G. V. Kuznetsov, P. A. Strizhak, R. S. Volkov, and A. O. Zhdanova, Amount of water sufficient to suppress thermal decomposition of forest fuel, J. Mech., 33, Issue 5, 703–710 (2017).

    Article  Google Scholar 

  19. Y. Tang and H. Wang, Development of a novel bentonite–acrylamide superabsorbent hydrogel for extinguishing gangue fire hazard, Powder Technol., 323, 486–494 (2018).

    Article  Google Scholar 

  20. O. Séro-Guillaume and J. Margerit, Modelling forest fi res. Part I: A complete set of equations derived by extended irreversible thermodynamics, Int. J. Heat Mass Transf., 45, 1705–1722 (2002).

    Article  Google Scholar 

  21. O. Séro-Guillaume and J. Margerit, Modelling forest fi res. Part II: Reduction to two-dimensional models and simulation of propagation. Int. J. Heat Mass Transf., 45, 1723–1737 (2002).

  22. A. M. Grishin and O. V. Matvienko, Numerical investigation of the formation of a convective column and a fire tornado by forest fi res, J. Eng. Phys. Thermophys., 87, No. 5, 1080–1093 (2014).

    Article  Google Scholar 

  23. A. Atreya, P. Olszewski, Y. Chen, and H. R. Baum, The eff ect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and fi rebrands, Int. J. Heat Mass Transf., 107, 319–328 (2017).

    Article  Google Scholar 

  24. I. S. Voytkov, R. S. Volkov, O. S. Lutoshkina, and G. V. Kuznetsov, Temperature traces of water aerosols, water-based emulsions, solutions and slurries moving in a reversed flow of high-temperature gases, Exp. Therm. Fluid Sci., 98, 20–29 (2018).

    Article  Google Scholar 

  25. P. A. Strizhak, R. S. Volkov, M. V. Piskunov, and M. V. Zabelin, Transformation of water ball falling in high-temperature gases, Atom. Sprays, 27, No. 10, 893–911 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Zhdanova.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 4, pp. 955–960, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, A.O., Zakharevich, A.V., Kuznetsov, G.V. et al. Analysis of the Efficiency of Combined Barrier Strips for Localizing the Burning of Needles and Leafage. J Eng Phys Thermophy 95, 939–944 (2022). https://doi.org/10.1007/s10891-022-02550-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02550-7

Keywords

Navigation