Skip to main content
Log in

Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Computational modeling of the formation of a convective column by forest fires has been carried out. It has been established that in the case of an unstable atmosphere stratification the basic factor influencing the thermal column formation is the intensification of the processes of turbulent mixing and that at a stable atmosphere stratification a more significant factor determining the convective column formation is the action of the buoyancy force. It has been shown that a swirling flow in the convective column is formed due to the appearance of a tangential velocity component as a consequence of the local circulation arising against the background of large-scale motion owing to the thermal and orographic inhomogeneities of the underlying surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Grishin, Physics of Forest Fires [in Russian], Izd. Tomsk. Univ., Tomsk (1994).

    Google Scholar 

  2. A. M. Grishin, Mathematical Modeling of Forest Fires and New Methods of Fighting Them [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  3. Yu. A. Gostintsev, S. S. Novikov, and L. A. Sukhanov, On the vortex structure of rapidly propagating fires, Fiz. Goreniya Vzryva, No. 3, 394–403 (1975).

  4. Yu. A. Gostintsev, G. M. Makhviladze, and B. V. Novozhilov, Formation of a large radiation-induced fire, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 17–25 (1992).

  5. G. F. Carrier, F. E. Fendel, and P. S. Feldman, Firestorms, ASME, J. Heat Transf., 107, No. 1, 16–26 (1985).

    Article  Google Scholar 

  6. O. V. Matvienko and V. M. Ushakov, Numerical investigation of the propagation of pollutants in the atmosphere, Vestn. Tomsk. Gos. Ped. Univ., Estestv. Tochn. Nauki, Issue 2 (30), 17–20 (2002).

  7. B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Samamki, Buoyancy-Induced Flows and Transport [Russian translation], Vol. 1, Mir, Moscow (1991).

    Google Scholar 

  8. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Introduction to the Theory of Concentrated Vortices [in Russian], Inst. Teor. Fiz. SO RAN, Novosibirsk (2003).

    Google Scholar 

  9. B. M. Bubnov, Thermal structure and turbulization of tornado-like vortices from localized heat sources over a rotating disk, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 33, No. 4, 434–442 (1977).

    MathSciNet  Google Scholar 

  10. A. M. Grishin, A. N. Golovanov, and Ya. V. Sukov, Physical modeling of fire tornadoes, Dokl. Ross. Akad. Nauk, 395, No. 2, 196–198 (2002).

    Google Scholar 

  11. A. M. Grishin, A. N. Golovanov, A. A. Kolesnikov, A. A. Strokatov, and R. Sh. Tsvyk, Experimental investigation of thermal and fire tornadoes, Dokl. Ross. Akad. Nauk, 400, No. 5, 618–620 (2005).

    Google Scholar 

  12. A. Yu. Snegirev, J. A. Marsden, J. Francis, and G. M. Makhviladze, Numerical studies and experimental observations of whirling flames, Int. J. Heat Mass Transf., 47, 2523–2539 (2004).

    Article  MATH  Google Scholar 

  13. A. M. Grishin and O. V. Matvienko, Mathematical modeling of fi re tornadoes, in: Abstracts of Papers and Communications at the 5 th Minsk Int. Heat and Mass Transfer Forum, Vol. 1, ITMO NAN Belarusi, Minsk (2004), pp. 174–176.

  14. A. M. Grishin and O. V. Matvienko, Mathematical modeling of the formation dynamics of a convective column and a fire tornado in forest fires, in: Proc. 13 th Symp. Combust. Explos., Chernogolovka, January 7–11, 2005.

  15. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical modeling of the formation of heat tornadoes, Inzh.-Fiz. Zh., 81, No. 5, 860–867 (2008).

    Google Scholar 

  16. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical modeling of the effect of external circulation on the structure of fire tornadoes, Izv. Vyssh. Uchebn. Zaved., Fizika, 52, No. 2/2, 100–106 (2009).

    Google Scholar 

  17. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical modeling of the gas combustion in a swirling jet and of the formation of a fire tornado, Inzh.-Fiz. Zh., 82, No. 5, 902–908 (2009).

    Google Scholar 

  18. B. A. Semenchenko, Physical Meteorology [in Russian], Aspekt Press, Moscow (2002).

    Google Scholar 

  19. M. E. Berlyand, Current Problems of Atmospheric Diffusion and Pollution [in Russian], Gidrometeoizdat, Leningrad (1975).

    Google Scholar 

  20. M. E. Berlyand, Prediction and Control of the Atmospheric Pollution [in Russian], Gidrometeoizdat, Leningrad (1985).

    Google Scholar 

  21. A. K. Gupta, D. G. Lilley, and N. Syred, Swirling Flows [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  22. M. A. Leschziner and W. Rodi, Computation of strongly swirling axisymmetric free jets, AIAA J., 22, No. 11, 370–373 (1984).

    Google Scholar 

  23. T. Kobayashi and M. Yoda, Modified k–ε model for turbulent swirling flow in a straight pipe, JSME Int. J., 30, 66–71 (1987).

    Article  Google Scholar 

  24. J. Piquet, Turbulent Flows: Models and Physics, Springer, Berlin (1999).

    MATH  Google Scholar 

  25. S. Patankar, Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics [Russian translation], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  26. J. H. Ferziger and M. Perič, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).

    Book  MATH  Google Scholar 

  27. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Longman House, London (1998).

    Google Scholar 

  28. J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transfer, 7, 147–163 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 5, pp. 602–606, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, A.M., Matvienko, O.V. Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires. J Eng Phys Thermophy 87, 1080–1093 (2014). https://doi.org/10.1007/s10891-014-1110-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1110-5

Keywords

Navigation