Skip to main content
Log in

Mechanisms of Heat and Mass Transfer in the Localization of Ground Forest Fires with the Use of Barrier Strips

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of field experiments on determination of the macroscopic mechanisms of heat and mass transfer in the localization of a ground forest fire with the use of a barrier strip in the form of a wetted layer of forest combustible materials (needles, leaves, twigs, and their mix), positioned upstream of the front of combustion of such materials, are presented. Most attention has been concentrated on the complex analysis of the influence of the dispersity of a water aerosol (the concentration of the water droplets in it and their sizes), used for the formation of a barrier strip, on the parameters of this strip. It is shown that the conditions of effective localization and suppression of the flaming and thermal decomposition of forest combustible materials can be realized in the case where a group of barrier strips of different widths, wetted to different depths, is formed in front of a forest fi re. The parameters of barrier strips (the volume of water supplied to a strip, the width of the strip, the depth of its wetting, and the specific density of the water in it) necessary and sufficient for the localization of ground forest fires of different sizes were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rakowsk, R. Szczygieł, M. Kwiatkowski, B. Porycka, K. Radwa, and K. Prochaska, Application tests of new wetting compositions for wildland firefighting, Fire Technol., 53, 1379–1398 (2017).

    Article  Google Scholar 

  2. A. Fuentes and J. L. Consalvi, Experimental study of the burning rate of small-scale forest fuel layers, Int. J. Therm. Sci., 74, 119–125 (2014).

    Article  Google Scholar 

  3. F. Morandini, Y. Perez-Ramirez, V. Tihay, P.-A. Santoni, and T. Barboni, Radiant, convective and heat release characterization of vegetation fire, Int. J. Therm. Sci., 70, 83–91 (2013).

    Article  Google Scholar 

  4. I. S. Voitkov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and V. E. Nakoryakov, Physicochemical processes in the interaction of aerosol with the combustion front of forest fuel materials, J. Appl. Mech. Tech. Phys., 59, No. 5, 891–902 (2018).

    Article  Google Scholar 

  5. A. M. Grishin, A. N. Golovanov, and V. V. Medvedev, Oscillation of the elements of combustible forest materials and its effect on ignition and combustion, J. Appl. Mech. Tech. Phys., 42, No. 4, 672–679 (2001).

    Article  Google Scholar 

  6. L. Y. Kataeva, D. A. Maslennikov, A. A. Loschilov, and I. V. Belyaev, Influence of the water barrier on the dynamics of a forest fire considering the inhomogeneous terrain and two-tier structure of the forest, ARPN J. Eng. Appl. Sci., 11, No. 5, 2972–2980 (2016).

    Google Scholar 

  7. A. O. Zhdanova, R. S. Volkov, I. S. Voytkov, K. Yu. Osipov, and G. V. Kuznetsov, Suppression of forest fuel thermolysis by water mist, Int. J. Heat Mass Transf., 126, 703–714 (2018).

    Article  Google Scholar 

  8. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the suppression of flaming combustion and thermal decomposition of model ground and crown forest fires, Combust. Explos. Shock Waves, 53, No. 6, 678–688 (2017).

    Article  Google Scholar 

  9. V. N. Vilyunov and V. E. Zarko, Ignition of Solids, Elsevier Science Publishers, Amsterdam (1989).

    Book  Google Scholar 

  10. A. M. Grishin and O. V. Shipulina, Mathematical model for spread of crown fires in homogeneous forests and along openings, Combust. Explos. Shock Waves, 38, No. 6, 622–632 (2002).

    Article  Google Scholar 

  11. A. M. Grishin and A. I. Filkov, A deterministic-probabilistic system for predicting forest fire hazard, Fire Saf. J., 46, Nos. 1–2, 56–62 (2011).

  12. I. V. Bartenev, S. V. Malyukov, M. A. Gnusov, and D. S. Stupnikov, Study of efficiency of soil-thrower and fire-break maker on the basis of mathematic simulation, IJMET, 9, No. 4, 1008–1018 (2018).

  13. A. M. Grishin, V. P. Zima, V. T. Kuznetsov, and A. I. Skorik, Ignition of combustible forest materials by a radiant energy flux, Combust. Explos. Shock Waves, 38, No. 1, 24–29 (2002).

    Article  Google Scholar 

  14. V. Fateev, M. Agafontsev, A. Filkov, and S. Volkov, Determination of smoldering time and thermal characteristics of firebrands under laboratory conditions, Fire Saf. J., 91, 791–799 (2017).

    Article  Google Scholar 

  15. M. Simo-Tagne, R. Rémond, Y. Rogaume, A. Zoulalian, and B. Bonoma, Modeling of coupled heat and mass transfer during drying of tropical woods, Int. J. Therm. Sci., 109, 299–308 (2016).

    Article  Google Scholar 

  16. O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov, Fire suppression by low-volatile chemically active fi re suppressants using aerosol technology, Fire Saf. J., 51, 102–109 (2012).

    Article  Google Scholar 

  17. J. Margerit and O. Séro-Guillaume, Modelling forest fires. Part II: Reduction to two-dimensional models and simulation of propagation, Int. J. Heat Mass Transf., 84, 253–261 (2015).

    Article  Google Scholar 

  18. A. Lamorlette and A. Collin, Analytical quantification of convective heat transfer inside vegetal structures, Int. J. Therm. Sci., 57, 78–84 (2012).

    Article  Google Scholar 

  19. O. P. Korobeinichev, A. G. Shmakov, A. A. Chernov, T. A. Bol′shova, V. M. Shvartsberg, K. P. Kutsenogii, and V. I. Makarov, Fire suppression by aerosols of aqueous solutions of salts, Combust. Explos. Shock Waves, 46, No. 1, 16–20 (2010).

  20. L. A. Dombrovsky, S. Dembele, and J. X. Wen, A simplified model for the shielding of fire thermal radiation by water mists, Int. J. Heat Mass Transf., 96, 199–209 (2016).

    Article  Google Scholar 

  21. V. Tihay, A. Simeoni, P.-A. Santoni, L. Rossi, J.-P. Garo, and J.-P. Vantelon, Experimental study of laminar flames obtained by the homogenization of three forest fuels, Int. J. Therm. Sci., 48, 488–501 (2009).

    Article  Google Scholar 

  22. K. Chetehouna, O. Séro-Guillaume, I. Sochet, and A. Degiovanni, On the experimental determination of flame front positions and of propagation parameters for a fire, Int. J. Therm. Sci., 47, 1148–1157 (2008).

    Article  Google Scholar 

  23. O. P. Korobeinichev, A. A. Paletsky, M. B. Gonchikzhapov, I. K. Shundrina, H. Chen, and N. Liu, Combustion chemistry and decomposition kinetics of forest fuels, Procedia Eng., 62, 182–193 (2013).

    Article  Google Scholar 

  24. R. Wadhwani, D. Sutherland, K. A. M. Moinuddin, and P. Joseph, Kinetics of pyrolysis of litter materials from pine and eucalyptus forests, J. Therm. Anal. Calorim., 130, No. 3, 2035–2046 (2017).

    Article  Google Scholar 

  25. N. D. Burrows, Flame residence times and rates of weight loss of eucalypt forest fuel particles, Int. J. Wildland Fire, 10, No. 2, 137–143 (2001).

    Article  Google Scholar 

  26. M. P. Plucinski, A. L. Sullivan, and R. J. Hurley, A methodology for comparing the relative effectiveness of suppressant enhancers designed for the direct attack of wildfires, Fire Saf. J., 87, 71–79 (2017).

    Article  Google Scholar 

  27. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Movement of water drops in a forest fuel layer in the course of its thermal decomposition, Therm. Sci., 22, No. 1, 301–312 (2018).

    Article  Google Scholar 

  28. N. V. Baranovskii and G. V. Kuznetsov, Prognosis of Forest Fires and Their Consequences for the Environment [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2009).

    Google Scholar 

  29. J. M. Serra-Diaz, C. Maxwell, M. S. Lucash, R. M. Scheller, D. M. Laflower, A. D. Miller, A. J. Tepley, H. E. Epstein, K. J. Anderson-Teixeira, and J. R. Thompson, Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century, Sci. Rep., 8, No. 1, Article No. 6749 (2018).

  30. C. R. Barefoot, K. G. Willson, J. L. Hart, C. J. Schweitzer, and D. C. Dey, Effects of thinning and prescribed fire frequency on ground flora in mixed Pinus-hardwood stands, For. Ecol. Manage., 432, 729–740 (2019).

    Article  Google Scholar 

  31. E. Köster, K. Köster, F. Berninger, A. Prokushkin, H. Aaltonen, X. Zhou, and J. Pumpanen, Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost, J. Environ. Manage., 228, 405–415 (2018).

    Article  Google Scholar 

  32. V. P. Zima and D. P. Kasymov, Experimental investigation of the effect exerted by a natural fire in wood material, J. Eng. Phys. Thermophys., 91, No. 4, 913–917 (2018).

    Article  Google Scholar 

  33. G. A. Dorrer, Mathematical Models of Forest Fires Dynamics [Russian translation], Lesnaya Promyshlennost′, Moscow (1979).

  34. A. M. Grishin, Mathematical Models of Forest Fires [in Russian], Izd. TGU, Tomsk (1981).

    Google Scholar 

  35. L. Y. Kataeva, D. A. Maslennikov, and N. A. Loshchilova, On the laws of combustion wave suppression by free water in a homogeneous porous layer of organic combustible materials, Fluid Dyn., 51, No. 3, 389–399 (2016).

    Article  MathSciNet  Google Scholar 

  36. L. Yu. Kataeva, A. L. Postnov, S. A. Loshchilov, and D. A. Maslennikov, On the influence of a water barrage on the dynamics of development of a forest fire depending on the lay of the land, Pozharovzryvobezopasnost′, 23, No. 1, 30–37 (2014).

  37. A. M. Eritsov and V. G. Gusev, Perfection of the technologies of formation of barrier and control strips in the extinguishing of forest fi res in a zone of forest works with the use of aircraft, Vestn. Povolzhskogo Gos. Tekhnol. Univ., Ser. Les, Ékologiya, Prirodopol′zovanie, 1, No. 29, 42–56 (2016).

  38. R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Suppression of the thermal decomposition reaction of forest combustible materials in large-area fi res, J. Eng. Phys. Thermophys., 91, No. 2, 411–419 (2018).

    Article  Google Scholar 

  39. D. A. Antonov, R. S. Volkov, I. S. Voitkov, A. O. Zhdanova, and G. V. Kuznetsov, Influence of special additives in a water aerosol on the suppression of a forest fire with it, J. Eng. Phys. Thermophys., 91, No. 5, 1318–1327 (2018).

    Article  Google Scholar 

  40. G. Rein , N. Cleaver , C. Ashton , P. Pironi , and J. L. Torero, The severity of smouldering peat fires and damage to the forest soil, Catena, 74, No. 3, 304–309 (2008).

  41. R. Hadden and G. Rein, Ignition and suppression of smouldering coal fires in smallscale experiments, Proc. Fall Tech. Meeting of the Western States Section of the Combustion Institute, 26–27 October 2009, Irvine (2009), pp. 275–286.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kuznetsov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 3, pp. 796–810, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Antonov, D.V., Voitkov, I.S. et al. Mechanisms of Heat and Mass Transfer in the Localization of Ground Forest Fires with the Use of Barrier Strips. J Eng Phys Thermophy 94, 775–789 (2021). https://doi.org/10.1007/s10891-021-02355-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02355-0

Keywords

Navigation