Skip to main content
Log in

Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afsheen S, Wang X, Li R, Zhu C-S, Lou Y-G (2008) Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci 15:381–397

    Article  Google Scholar 

  • Agelopoulos NG, Dicke M, Posthumus MA (1995) Role of volatile inforchemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (hymenoptera: Braconidae): a behavioral and chemical study. J Chem Ecol 21:1789–1811

    Article  CAS  PubMed  Google Scholar 

  • Amante M, Schöller M, Hardy ICW, Russo A (2017a) Reproductive biology of Holepyris sylvanidis (hymenoptera: Bethylidae). Biol Control 106:1–8

    Article  Google Scholar 

  • Amante M, Schöller M, Suma P, Russo A (2017b) Bethylids attacking stored-product pests: an overview. Entomol Exp Appl 163:251–264

    Article  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Trematerra P (2006) Responses of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) to traps baited with pheromones and food volatiles. Eur J Entomol 103:371–378

    Article  Google Scholar 

  • Baker JE, Sukkestad DR, Woo SM, Nelson DR (1978) Cuticular hydrocarbons of Tribolium castaneum: effects of the food additive tricalcium phosphate. Insect Biochem 8:159–167

    Article  CAS  Google Scholar 

  • Borges M, Colazza S, Ramirez-Lucas P, Chauhan KR, Blassioli-Moraes MC, Aldrich JR (2003) Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (hymenoptera: Scelionidae). Physiol Entomol 28:349–355

    Article  Google Scholar 

  • Colazza S, Aquila G, De Pasquale C, Peri E, Millar JG (2007) The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J Chem Ecol 33:1405–1420

    Article  CAS  PubMed  Google Scholar 

  • Colazza S, Lo Bue M, Lo Giudice D, Peri E (2009) The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96:975–981

    Article  CAS  PubMed  Google Scholar 

  • Colazza S, Cusumano A, Lo Giudice D, Peri E (2014) Chemo-orientation responses in hymenopteran parasitoids induced by substrate-borne semiochemicals. BioControl 59:1–17

    Article  CAS  Google Scholar 

  • Collatz J, Steidle JLM (2008) Hunting for moving hosts: Cephalonomia tarsalis, a parasitoid of free-living grain beetles. Basic Appl Ecol 9:452–457

    Article  Google Scholar 

  • Collatz J, Fuhrmann A, Selzer P, Oehme RM, Hartelt K, Kimmig P, Meiners T, Mackenstedt U, Steidle JLM (2010) Being a parasitoid of parasites: host finding in the tick wasp Ixodiphagus hookeri by odours from mammals. Entomol Exp Appl 134:131–137

    Article  Google Scholar 

  • Conti E, Colazza S (2012) Chemical ecology of egg parasitoids associated with true bugs. Psyche 2012:1–11

    Article  Google Scholar 

  • Conti E, Salerno G, Leombruni B, Frati F, Bin F (2010) Short-range allelochemicals from a plant-herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. J Exp Biol 213:3911–3919

    Article  CAS  PubMed  Google Scholar 

  • Dippel C, Hilker M (1998) Effects of physical and chemical signals on host foraging behavior of Drino inconspicua (Diptera: Tachinidae), a generalist parasitoid. Environ Entomol 27:682–687

    Article  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Evans HE (1977) A revision of the genus Holepyris in the Americas (hymenoptera: Bethylidae). Trans Am Entomol Soc 103:531–579

    Google Scholar 

  • Fürstenau B, Adler C, Schulz H, Hilker M (2016) Host habitat volatiles enhance the olfactory response of the larval parasitoid Holepyris sylvanidis to specifically host-associated cues. Chem Senses 41:611–621

    PubMed  Google Scholar 

  • Gerhardt H, Betz O, Albert K, Lammerhofer M (2016) Insect adhesion secretions: similarities and dissimilarities in hydrocarbon profiles of tarsi and corresponding tibiae. J Chem Ecol 42:725–738

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • González JM, Cusumano A, Williams HJ, Colazza S, Vinson SB (2011) Behavioral and chemical investigations of contact kairomones released by the mud dauber wasp Trypoxylon politum, a host of the parasitoid Melittobia digitata. J Chem Ecol 37:629–639

    Article  PubMed  Google Scholar 

  • Hebanowska E, Malinski E, Dubis E, Pihlaja K, Oksman P, Wiinamäki K, Nawrot J, Szafranek J (1989) The composition of cuticular hydrocarbons of the Tribolium destructor. Comp Biochem Physiol B Comp Biochem 93:437–442

    Article  Google Scholar 

  • Hebanowska E, Malinski E, Latowska A, Dubis E, Pihlaja K, Oksman P, Nawrot J, Szafranek J (1990) A comparison of cuticular hydrocarbons of larvae and beetles of the Tribolium destructor. Comp Biochem Physiol B Comp Biochem 96:815–819

    Article  Google Scholar 

  • Hilker M, McNeil J (2008) Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. In: Wajnberg E, Bernstein C, van Alphen J (eds) Behavioural ecology of insect parasitoids. From theoretical approaches to field applications. Blackwell Publishing Ltd., Oxford, pp 693–705

    Google Scholar 

  • Howard RW (1992) Comparative analysis of cuticular hydrocarbons from the ectoparasitoids Cephalonomia waterstoni and Laelius utilis (hymenoptera: Bethylidae) and their respective hosts, Cryptolestes ferrugineus (Coleoptera: Cucujidae) and Trogoderma variabile (Coleoptera: Dermestidae). Ann Entomol Soc Am 85:317–325

    Article  CAS  Google Scholar 

  • Howard RW (2001) Cuticular hydrocarbons of adult Pteromalus cerealellae (hymenoptera: Pteromalidae) and two larval hosts, Angoumois grain moth (Lepidoptera: Gelechiidae) and cowpea weevil (Coleptera: Bruchidae). Ann Entomol Soc Am 94:152–158

    Article  CAS  Google Scholar 

  • Howard RW, Flinn PW (1990) Larval trails of Cryptolestes ferrugineus (Coleoptera: Cucujidae) as kairomonal host-finding cues for the parasitoid Cephalonomia waterstoni (hymenoptera: Bethylidae). Ann Entomol Soc Am 83:239–245

    Article  Google Scholar 

  • Howard RW, Charlton M, Charlton RE (1998) Host-finding, host-recognition, and host-acceptance behavior of Cephalonomia tarsalis (hymenoptera: Bethylidae). Ann Entomol Soc Am 91:879–889

    Article  Google Scholar 

  • Iacovone A et al (2016) The role of contact chemoreception in the host location process of an egg parasitoid. J Insect Physiol 91-92:63–75

    Article  CAS  PubMed  Google Scholar 

  • IBM Corp. Released (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp: Armonk, NY

  • Lo Giudice D, Riedel M, Rostás M, Peri E, Colazza S (2011) Host sex discrimination by an egg parasitoid on brassica leaves. J Chem Ecol 37:622–628

    Article  PubMed  Google Scholar 

  • Lockey KH (1978) Hydrocarbons of adult Tribolium castaneum Hbst. And Tribolium confusum Duv. (Coleoptera: Tenebrionidae). Comp Biochem Physiol B Comp Biochem 61:401–407

    Article  Google Scholar 

  • Mathis KA, Tsutsui ND (2016) Cuticular hydrocarbon cues are used for host acceptance by Pseudacteon spp. Phorid flies that attack Azteca sericeasur ants. J Chem Ecol 42:286–293

    Article  CAS  PubMed  Google Scholar 

  • Mattiacci L, Dicke M (1995) The parasitoid Cotesia glomerata (hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. J Insect Behav 8:485–498

    Article  Google Scholar 

  • Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17

    Article  CAS  Google Scholar 

  • Park T (1934) Observations on the general biology of the flour beetle, Tribolium confusum. Q Rev Biol 9:36–54

    Article  Google Scholar 

  • Peri E, Frati F, Salerno G, Conti E, Colazza S (2013) Host chemical footprints induce host sex discrimination ability in egg parasitoids. PLoS One 8:e79054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peri E, Salerno G, Slimani T, Frati F, Conti E, Colazza S, Cusumano A (2016) The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience. Sci Rep 6:27098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quicke DLJ (1997) Parasitic wasps. Chapman & Hall Ltd, New York

    Google Scholar 

  • R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing

  • Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6:144–152

    Article  CAS  PubMed  Google Scholar 

  • Rostás M, Wölfling M (2009) Caterpillar footprints as host location kairomones for Cotesia marginiventris: persistence and chemical nature. J Chem Ecol 35:20–27

    Article  PubMed  Google Scholar 

  • Rostás M, Ruf D, Zabka V, Hildebrandt U (2008) Plant surface wax affects parasitoid's response to host footprints. Naturwissenschaften 95:997–1002

    Article  PubMed  Google Scholar 

  • Rutledge CE (1996) A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 131:121–131

    Article  Google Scholar 

  • Salerno G, Frati F, Conti E, De Pasquale C, Peri E, Colazza S (2009) A finely tuned strategy adopted by an egg parasitoid to exploit chemical traces from host adults. J Exp Biol 212:1825–1831

    Article  CAS  PubMed  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steidle JLM, Van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148

    Article  Google Scholar 

  • Suzuki T, Nakakita H, Kuwahara Y (1988) Defensive secretions and hydrocarbons of two Tribolium species and their hybrids (Coleoptera: Tenebrionidae). Appl Entomol Zool 23:329–337

    Article  CAS  Google Scholar 

  • Thibout E (2005) Role of caterpillar silk thread in location of host pupae by the parasitoid Diadromus pulchellus. J Insect Behav 18:817–826

    Article  Google Scholar 

  • Van Alphen JJM, Jervis MA (1996) Foraging behaviour. In: Jervis MA, Kidd N (eds) Insect natural enemies: practical approaches to their study and evaluation. Springer Netherlands, Dordrecht, pp 1–62

    Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  • Vayias BJ, Athanassiou CG, Buchelos CT (2006) Evaluation of three diatomaceous earth and one natural pyrethrum formulations against pupae of Tribolium confusum DuVal (Coleoptera: Tenebrionidae) on wheat and flour. Crop Prot 25:766–772

    Article  CAS  Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11:79–96

    Article  Google Scholar 

  • Wajnberg E, Colazza S (2013) Chemical ecology of parasitoids. Wiley-Blackwell, Chichester

  • Wajnberg E, Bernstein C, van Alphen J (2008) Behavioural ecology of insect parasitoids. From theoretical approaches to field applications. Blackwell Publishing Ltd., Oxford

Download references

Acknowledgements

We gratefully acknowledge the help by Heidrun Anders (Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institut, Berlin, Germany) for help and advice in rearing T. confusum and H. sylvanidis specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Fürstenau.

Electronic supplementary material

ESM 1

(DOCX 2186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fürstenau, B., Hilker, M. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis . J Chem Ecol 43, 858–868 (2017). https://doi.org/10.1007/s10886-017-0885-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0885-1

Keywords

Navigation