Skip to main content
Log in

Caterpillar Footprints as Host Location Kairomones for Cotesia marginiventris: Persistence and Chemical Nature

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivores walking over the epicuticular wax layer of a plant may leave tracks that disclose their presence to hunting predators or parasitoids. The braconid wasp Cotesia marginiventris is a solitary parasitoid of young noctuid caterpillars. It can locate potential hosts from a distance by orienting toward the scent of herbivore-damaged plants. Upon landing on the caterpillars’ food plant, the female parasitoid searches for further cues (kairomones) that confirm the presence of a suitable host. In a previous study, we showed that C. marginiventris recognizes the chemical footprints of absent Spodoptera frugiperda caterpillars on a leaf. Here, we report on the persistence and chemical nature of this host location kairomone. In a series of behavioral assays, we confirmed that caterpillars of S. frugiperda leave chemical tracks that elicit characteristic antennation behavior in C. marginiventris for up to 2 days. Both hexane extracts of caterpillar footprints and of the larvae’s ventral cuticle induced antennation and contained almost identical long-chain hydrocarbons, thus suggesting the prolegs and claspers as the kairomones’ main source. A series of linear C21 to C32 alkanes accounted for ca 90% of all identified compounds. Female wasps showed significant antennation responses on leaves treated with a reconstructed blend of these n-alkanes. However, wasp responses were relatively weak. Therefore, we presume that minor compounds, such as monomethyl-branched alkanes, which were also found, may contribute additionally to host recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Borges, M., Colazza, S., Ramirez-Lucas, P., Chauhan, K. R., Moraes, M. C. B., and Aldrich, J. R. 2003. Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidae). Physiol. Entomol. 28:349–355.

    Article  Google Scholar 

  • Cardoza, Y. J., Alborn, H. T., and Tumlinson, J. H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Colazza, S., Aquila, G., De Pasquale, C., Peri, E., and Millar, J. G. 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–1420.

    Article  PubMed  CAS  Google Scholar 

  • Collatz, J., and Steidle, J. L. M. 2008. Hunting for moving hosts: Cephalonomia tarsalis, a parasitoid of free-living grain beetles. Basic Appl. Ecol. 9:452–457.

    Article  Google Scholar 

  • Conti, E., Salerno, G., Bin, F., Williams, H. J., and Vinson, S. B. 2003. Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J. Chem. Ecol. 29:115–130.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., Van Poecke, R. M. P., and De Boer, J. G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.

    Article  CAS  Google Scholar 

  • Dmoch, J., Lewis, W. J., Martin, P. B., and Nordlund, D. A. 1985. Role of host-produced stimuli and learning in host selection behavior of Cotesia (= Apanteles) marginiventris (Cresson) (Hymenoptera, Braconidae). J. Chem. Ecol. 11:453–463.

    Article  Google Scholar 

  • Eltz, T. 2006. Tracing pollinator footprints on natural flowers. J. Chem. Ecol. 32:907–915.

    Article  PubMed  CAS  Google Scholar 

  • Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2003. (Z)-9-Pentacosene—contact pheromone of the locust borer, Megacyllene robiniae. Chemoecology. 13:135–141.

    Article  CAS  Google Scholar 

  • Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Gouinguené, S. P., and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.

    Article  PubMed  Google Scholar 

  • Heil, M. 2008. Indirect defence via tritrophic interactions. New Phytol. 178:41–61.

    Article  PubMed  CAS  Google Scholar 

  • Hemptinne, J. L., Lognay, G., Doumbia, M., and Dixon, A. F. G. 2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47.

    Article  CAS  Google Scholar 

  • Hoballah, M. E., and Turlings, T. C. J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31:2003–2018.

    Article  PubMed  CAS  Google Scholar 

  • King, E. G. and Leppla, N. C. 1984. Advances and Challenges in Insect Rearing. Washington D.C.: Agriculture Research Service, USDA, U.S. Government Printing Office.

  • Klomp, H. 1981. Parasitic wasps as sleuth-hounds—Response of an ichneumon wasp to the trail of its host. Neth. J. Zool. 31:762–772.

    Article  Google Scholar 

  • Kosaki, A., and Yamaoka, R. 1996. Chemical composition of footprints and cuticula lipids of three species of lady beetles. Japan. J. Appl. Entomol. Zool. 40:47–53.

    CAS  Google Scholar 

  • Loke, W. H., and Ashley, T. R. 1984a. Potential uses of kairomones for behavioral manipulation of Cotesia marginiventris (Cresson). J. Chem. Ecol. 10:1377–1384.

    Article  CAS  Google Scholar 

  • Loke, W. H., and Ashley, T. R. 1984b. Sources of fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae), kairomones eliciting host-finding behavior in Cotesia (=Apanteles) marginiventris (Hymenoptera, Braconidae). J. Chem. Ecol. 10:1019–1027.

    Article  Google Scholar 

  • Müller, C., and Riederer, M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31:2621–2651.

    Article  PubMed  Google Scholar 

  • Nakashima, Y., Birkett, M. A., Pye, B. J., Pickett, J. A., and Powell, W. 2004. The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J. Chem. Ecol. 30:1103–1116.

    Article  PubMed  CAS  Google Scholar 

  • Ohara, Y., Takabayashi, J., and Takahashi, S. 1996. Oviposition kairomones in the cuticular wax of host larvae, Pseudaletia separata, toward its parasitic wasp, Cotesia kariyai. Appl. Entomol. Zoolog. 31:271–277.

    Google Scholar 

  • Riddick, E. W. 2006. Egg load and body size of lab-cultured Cotesia marginiventris. Biocontrol. 51:603–610.

    Article  Google Scholar 

  • Rostás, M., Ton, J., Mauch-Mani, B., and Turlings, T. C. J. 2006. Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids. J. Chem. Ecol. 32:1897–1909.

    Article  PubMed  Google Scholar 

  • Rostás, M., Ruf, D., Zabka, V., and Hildebrandt, U. 2008. Plant surface wax affects parasitoid’s response to host footprints. Naturwissenschaften. 10:997–1002.

    Article  Google Scholar 

  • Roux, O., Gers, C., Tene-Ghomsi, J. N., Arvanitakis, L., Bordat, D., and Legal, L. 2007. Chemical characterization of contact semiochemicals for host-recognition and host-acceptance by the specialist parasitoid Cotesia plutellae (Kurdjumov). Chemoecology 17:13–18.

    Article  CAS  Google Scholar 

  • Rutledge, C. E., Eigenbrode, S. D., and Ding, H. 2008. A plant surface mutation mediates predator interference among ladybird larvae. Ecol. Entomol. 33:464–472.

    Article  Google Scholar 

  • Steidle, J. L. M., and Van Loon, J. J. A. 2002. Chemoecology of parasitoid and predator oviposition behaviour, pp. 291–317, in M. Hilker, and T. Meiners (eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin.

    Google Scholar 

  • Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Rose, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92:4169–4174.

    Article  PubMed  CAS  Google Scholar 

  • Vinson, S. B. 1998. The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Contr. 11:79–96.

    Article  Google Scholar 

  • Votsch, W., Nicholson, G., Muller, R., Stierhof, Y. D., Gorb, S., and Schwarz, U. 2002. Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem. Mol. Biol. 32:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  • Winter, T. R., and Rostás, M. 2008. Ambient ultraviolet radiation induces protective responses in soybean but does not interfere with tritrophic interactions. Environ. Pollut. 155:290–297.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Trautmann (Bayer CropScience) for weekly supplies of Spodoptera frugiperda and to V. Uhl for technical assistance. We also thank M. Riedel for assistance with compound identifications, M. Riederer for making lab space available, and J. Winkler-Steinbeck for cultivating barley. Two anonymous reviewers provided helpful comments. Financial support was provided by the Deutsche Forschungsgemeinschaft (SFB 567, TP B9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rostás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostás, M., Wölfling, M. Caterpillar Footprints as Host Location Kairomones for Cotesia marginiventris: Persistence and Chemical Nature. J Chem Ecol 35, 20–27 (2009). https://doi.org/10.1007/s10886-009-9590-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9590-z

Keywords

Navigation