Skip to main content
Log in

Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles?

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Although the effect of herbivory on plant reproduction has been investigated in some detail, little is known about how herbivores affect floral signalling. Here, we investigated the effect of foliar herbivory by the African Cotton Leafworm (Spodoptera littoralis) on floral signalling and fruit set in the White Campion (Silene latifolia). We found no effects of herbivory on floral traits involved in visual signalling (flower number, corolla diameter, calyx length, petal length) or in amount of nectar produced. However, Spodoptera-infested plants emitted higher amounts of the two floral volatiles, (Z)-3-hexenyl acetate and β-ocimene, than control plants. Open pollinated, infested plants also were found to produce more fruits than control plants, but only with nocturnal pollinators. Experimental addition of the two induced floral volatiles to non-infested Silene flowers also led to the production of more fruits with nocturnal pollination. This suggests that higher fruit production in herbivore-infested plants was caused by increased nocturnal pollinator attraction, mediated by the induced floral emission of these two volatiles. Our results show that the effects of herbivory on plant reproductive success are not necessarily detrimental, as plants can compensate herbivory with increased investment in pollinator attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala-Roberts L, Parra-Tabla V, Navarro J (2007) Is floral longevity influenced by reproductive costs and pollination success in Cohniella ascendens (Orchidaceae)? Ann Bot 100:1367–1371

    Article  PubMed Central  PubMed  Google Scholar 

  • Abel C, Clauss M, Schaub A, Gershenzon J, Tholl D (2009) Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta 230:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967

    Article  PubMed  Google Scholar 

  • Agrawal AA (2011a) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Agrawal AA (2011b) New synthesis-trade-offs in chemical ecology. J Chem Ecol 37:230–231

    Article  CAS  PubMed  Google Scholar 

  • Barber NA, Adler LS, Theis N, Hazzard RV, Kiers ET (2012) Herbivory reduces plant interactions with above- and belowground antagonists and mutualists. Ecology 93:1560–1570

    Article  PubMed  Google Scholar 

  • Belsky AJ (1986) Does herbivory benefit plants? A review of the evidence. Am Nat 127:870–892

    Article  Google Scholar 

  • Bergelson J, Crawley MJ (1992) Herbivory and Ipomopsis aggregata: the disadvantages of being eaten. Am Nat 139:870–882

    Article  Google Scholar 

  • Bergelson J, Juenger T, Crawley MJ (1996) Regrowth following herbivory in Ipomopsis aggregata: compensation but not overcompensation. Am Nat 148:744–755

    Article  Google Scholar 

  • Bruinsma M, Lucas-Barbosa D, ten Broeke CJ, van Dam NM, van Beek TA, Dicke M, van Loon JJ (2014) Folivory affects composition of nectar, floral odor and modifies pollinator behavior. J Chem Ecol 40:39–49

    Article  CAS  PubMed  Google Scholar 

  • Brys R, Shefferson RP, Jacquemyn H (2011) Impact of herbivory on flowering behaviour and life history trade-offs in a polycarpic herb: a 10-year experiment. Oecologia 166:293–303

    Article  PubMed  Google Scholar 

  • CABI/EPPO (1997) Quarantine pests for Europe, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Campbell SA, Kessler A (2013) Plant mating system transitions drive the macroevolution of defense strategies. Proc Natl Acad Sci U S A 110(10):3973–3978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dicke M, Van Beek TA, Posthumus MA, Dom NB, Van Bokhoven H, De Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions. Involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  CAS  PubMed  Google Scholar 

  • Dötterl S, Jürgens A, Seifert K, Laube T, Weissbecker B, Schutz S (2006) Nursery by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718

    Article  PubMed  Google Scholar 

  • Dufaÿ M, Anstett MC (2003) Conflicts between plants and pollinators that reproduce within inflorescences: evolutionary variations on a theme. Oikos 100:3–14

    Article  Google Scholar 

  • Elmqvist T, Gardfjell H (1988) Differences in response to defoliation between males and females of Silene dioica. Oecologia 77:225–230

    Article  Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    Article  CAS  PubMed  Google Scholar 

  • Elzinga JA, Biere A, Harvey JA (2002) The rearing of the gregarious koinobiont endoparasitoid Microplitis tristis (Hymenoptera: Braconidae) on its natural host Hadena bicruris (Lepidoptera: Noctuidae). Proc Exp Appl Entomol 13:109–115

    Google Scholar 

  • Freeman RS, Brody AK, Neefus CD (2003) Flowering phenology and compensation for herbivory in Ipomopsis aggregata. Oecologia 136:394–401

    Article  PubMed  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in central European populations of Silene and Saponaria species. Bot Acta 109:316–324

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol 23:901–912

    Article  Google Scholar 

  • Kessler A, Halitschke R, Poveda K (2011) Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant-pollinator interactions. Ecology 92:1769–1780

    Article  PubMed  Google Scholar 

  • Lehtila K, Strauss SY (1997) Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396–403

    Article  Google Scholar 

  • Lloyd DG (1980) Sexual strategies in plants 1. A hypothesis of serial adjustment of maternal investment during 1 reproductive session. New Phytol 86:69–80

    Article  Google Scholar 

  • Lohman DJ, Zangerl AR, Berenbaum MR (1996) Impact of floral herbivory by parsnip webworm (Oecophoridae: Depressaria pastinacella Duponchel) on pollination and fitness of wild parsnip (Apiaceae, Pastinaca sativa L.). Am Midl Nat 136:407–412

    Article  Google Scholar 

  • Lucas-Barbosa D, van Loon JJA, Gols R, van Beek TA, Dicke M (2013) Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Funct Ecol 27:245–254

    Article  Google Scholar 

  • Marquis RJ (1992) The selective impact of herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution and genetics. University of Chicago Press, Illinois, pp 301–325

    Google Scholar 

  • Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R (2012) Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS ONE 7, e31971. doi:10.1371/journal.pone.0031971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003) Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135:601–605

    Article  PubMed  Google Scholar 

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2005) Floral trait expression and plant fitness in response to below- and aboveground plant-animal interactions. Perspect Plant Ecol Evol Syst 7:77–83

    Article  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Reekie E, Bazzaz F (2005) Reproductive allocation in plants. Elsevier Academic Press, San Diego

    Google Scholar 

  • Reichman OJ, Smith SC (1991) Responses to simulated leaf and root herbivory by biennial, Tragopogon dubius. Ecology 72:116–124

    Article  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:1643–1656

    Article  Google Scholar 

  • Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont G (2014) Herbivory and floral signalling: phenotypic plasticity and trade-offs between reproduction and indirect defence. New Phytol 203:257–266

    Article  CAS  PubMed  Google Scholar 

  • Seybold S (1990) Caryophyllaceae. In: Sebald O, Seybold S, Philippi G (eds) Die Farn- und Blütenpflanzen Baden-Württembergs. Band 1. Verlag Eugen Ulmer, Stuttgart, pp 368–466

    Google Scholar 

  • Strauss SY, Conner JK, Rush SL (1996) Foliar herbivory affects floral characters and plant attractiveness to pollinators: implications for male and female plant fitness. Am Nat 147:1098–1107

    Article  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440

    Article  PubMed  Google Scholar 

  • Wolfe LM, Elzinga JA, Biere A (2004) Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol Lett 7:813–820

    Article  Google Scholar 

  • Zangerl AR, Berenbaum MR (2009) Effects of florivory on floral volatile emissions and pollination success in the wild parsnip. Arthropod Plant Int 3:181–191

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Anna Salatiello and Giovanna Dati for help with conducting experiments. David Carrasco from Swedish University of Agricultural Science provided the Spodoptera larvae used in this study. This research was funded by the CRN-InvaVol grant and POR-Campania BIP to SC and SF and by Swiss National Science Funds (SNF/ESF grant no. 31VL30_134416 to FPS, embedded in the Eurocores Invavol program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cozzolino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOCX 12 kb)

Online Resource 2

(DOCX 14 kb)

Online Resource 3

(DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzolino, S., Fineschi, S., Litto, M. et al. Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles?. J Chem Ecol 41, 622–630 (2015). https://doi.org/10.1007/s10886-015-0597-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0597-3

Keywords

Navigation