Skip to main content
Log in

Influence of different infracardial positions of central venous catheters in hemodynamic monitoring using the transpulmonal thermodilution method

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Hemodynamic measurements are often conducted by the transpulmonary thermodilution (TPTD)-based PiCCO®-system. This requires a central-venous (CVC) and a thermistor-tipped arterial catheter, usually placed in the femoral artery. In certain clinical situations, CVC devices have to be placed in the inferior vena cava. However, little is known about the influence of different CVC positions (i.e. ipsi- vs. contra-lateral to the arterial catheter) on the accuracy of the TPTD measurement results. In this prospective observational study surgical intensive care unit patients who had been inserted with CVCs either into the superior (CVCVCS) or the inferior vena cava (CVCinf) in addition to an arterial PiCCO®-catheter, were enrolled. Patients were then divided into two groups: Group I was provided with a CVC in the contralateral (CVCcontra) and Group II in the ipsilateral (CVCipsi) inferior vena cava. Thermodilution via injection of ice-cold saline was then performed via CVCsup and CVCinf. Bland–Altman analysis for cardiac index (CI), extra-vascular lung water index (EVLWI) and global end-diastolic volume index (GEDVI) were employed. Additional correction formulas for femorally assed parameters were determined. In a total of 28 patients, bias (limits of agreement) for measurements of CI in CVCcontra was found to be +0.2 (−0.4; +0.9) and +0.3 (−0.4; +1.0) L/min/m2 in CVCipsi. GEDVI showed a bias of +274.8 (−47.3; +596.9) mL/m2 in CVCcontra and +274.7 (−100.7; +650.1) mL/m2 in CVCipsi. The mean EVLWI were 9.4 ± 4.3 mL/kg for EVLWIVCS and 10.7 ± 5.2 mL/kg for EVLWIinf. The LoA yielded at −3.4 and +6.1 mL/kg with a bias of +1.3 mL/kg. Percentage errors revealed clinically acceptable limits for CI and GEDVI, but not for EVLWI. Using TPTD via an infracardial central vein, measurements of CI showed high accuracy and precision while GEDVI measurements were precise with a lower accuracy, irrespective of the position of the infracardial CVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34(5):800–20. doi:10.1007/s00134-007-0967-6.

    Article  PubMed  Google Scholar 

  2. Pinsky MR. Hemodynamic monitoring over the past 10 years. Crit Care. 2006;10(1):117. doi:10.1186/cc3997.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hamilton W, Moore J, Kinsman J. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am J Physiol. 1982;84:338–44.

    Google Scholar 

  4. Godje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardio-Thorac. 1998;13(5):533–9. doi:10.1016/S1010-7940(98)00063-3.

    Article  CAS  Google Scholar 

  5. Broch O, Renner J, Gruenewald M, Meybohm P, Hocker J, Schottler J, Steinfath M, Bein B. Variation of left ventricular outflow tract velocity and global end-diastolic volume index reliably predict fluid responsiveness in cardiac surgery patients. J Crit Care. 2012;. doi:10.1016/j.jcrc.2011.07.073.

    PubMed  Google Scholar 

  6. Kuzkov VV, Kirov MY, Sovershaev MA, Kuklin VN, Suborov EV, Waerhaug K, Bjertnaes LJ. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;34(6):1647–53. doi:10.1097/01.Ccm.0000218817.24208.2e.

    Article  PubMed  Google Scholar 

  7. Khan S, Trof RJ, Groeneveld ABJ. Transpulmonary dilution-derived extravascular lung water as a measure of lung edema. Curr Opin Crit Care. 2007;13(3):303–7. doi:10.1097/Mcc.0b013e32811d6ccd.

    Article  PubMed  Google Scholar 

  8. Schmidt S, Westhoff TH, Hofmann C, Schaefer JH, Zidek W, Compton F, van der Giet M. Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Crit Care Med. 2007;35(3):783–6. doi:10.1097/01.Ccm.0000256720.11360.Fb.

    Article  PubMed  Google Scholar 

  9. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;. doi:10.1186/Cc9030.

    Google Scholar 

  10. Lemson J, Backx AP, van Oort AM, Bouw TP, van der Hoeven JG. Extravascular lung water measurement using transpulmonary thermodilution in children. Pediatric Crit Care Med. 2009;10(2):227–33. doi:10.1097/PCC.0b013e3181937227.

    Article  Google Scholar 

  11. Michard F. Looking at transpulmonary thermodilution curves—the cross-talk phenomenon. Chest. 2004;126(2):656–7. doi:10.1378/Chest.126.2.656-A.

    Article  PubMed  Google Scholar 

  12. Lemson J, Eijk RJR, van der Hoeven JG. The “cross-talk phenomenon” in transpulmonary thermodilution is flow dependent. Intensive Care Med. 2006;32(7):1092. doi:10.1007/S00134-006-0162-1.

    Article  PubMed  Google Scholar 

  13. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60. doi:10.1191/096228099673819272.

    Article  CAS  PubMed  Google Scholar 

  14. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82. doi:10.1080/10543400701329422.

    Article  PubMed  Google Scholar 

  15. Sakka SG, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med. 1999;25(8):843–6. doi:10.1007/S001340050962.

    Article  CAS  PubMed  Google Scholar 

  16. Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P. Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Brit J Anaesth. 2002;88(3):350–6. doi:10.1093/Bja/88.3.350.

    Article  CAS  PubMed  Google Scholar 

  17. Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G, Neidhardt A. Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med. 2002;28(6):712–8. doi:10.1007/S00134-002-1286-6.

    Article  PubMed  Google Scholar 

  18. Csontos C, Foldi V, Fischer T, Bogar L. Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation. Acta Anaesthesiol Scand. 2008;52(6):742–9. doi:10.1111/J.1399-6576.2008.01658.X.

    Article  CAS  PubMed  Google Scholar 

  19. Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, von Delius S, Geisler F, Eckel F, Fritsch R, Siveke J, Henschel B, Schmid RM. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med. 2008;36(8):2348–54. doi:10.1097/Ccm.0b013e3181809928.

    Article  PubMed  Google Scholar 

  20. Parienti JJ, Thirion M, Megarbane B, Souweine B, Ouchikhe A, Polito A, Forel JM, Marque S, Misset B, Airapetian N, Daurel C, Mira JP, Ramakers M, du Cheyron D, Le Coutour X, Daubin C, Charbonneau P, Grp CS. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy—a randomized controlled trial. J Am Med Assoc. 2008;299(20):2413–22. doi:10.1001/Jama.299.20.2413.

    Article  CAS  Google Scholar 

  21. Keller R, Goettel N, Bendjelid K. Transpulmonary thermodilution curve and the cross-talk phenomenon. Med Intensiva. 2012;36(6):446–8. doi:10.1016/J.Medin.2011.10.010.

    Article  CAS  PubMed  Google Scholar 

  22. Michard F, Alaya S, Medkour F. Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med. 2004;32(1):308–9. doi:10.1097/01.Ccm.0000104921.75069.Cd.

    Article  PubMed  Google Scholar 

  23. Critchley LAH, Critchley JAJH. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15(2):85–91. doi:10.1023/A:1009982611386.

    Article  CAS  PubMed  Google Scholar 

  24. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care a meta-analysis of accuracy and precision. Anesthesiology. 2010;113(5):1220–35.

    Article  PubMed  Google Scholar 

  25. Feldman JM. Is it a bird? Is it a plane? The role of patient monitors in medical decision making. Anesth Analg. 2009;108(3):707–10. doi:10.1213/Ane.0b013e318196c7b6.

    Article  PubMed  Google Scholar 

  26. Bigatello LM, Kistler EB, Noto A. Limitations of volumetric indices obtained by transthoracic thermodilution. Minerva Anestesiol. 2010;76(11):945–9.

    CAS  PubMed  Google Scholar 

  27. Oppenheimer L, Elings VB, Lewis FR. Thermal-dye lung water measurements: effects of edema and embolization. J Surg Res. 1979;26(5):504–12.

    Article  CAS  PubMed  Google Scholar 

  28. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the dedicated staff of the ICUs at Martin-Luther-University. Without their valuable contribution, this study would not have been possible.

Funding

Funding was provided by departmental funding only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Soukup.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest (financial or non-financial) to disclose.

Appendix

Appendix

Formulas for calculation of MTt and DSt out of existing data:

MTt (s):
$${\text{ITBV }} = \, 1.25 \, \times {\text{ GEDV}}$$
(1)
$$\begin{aligned} &{\text{Intrathoracic Thermal Volume }}\left( {\text{ITTV}} \right) \, = {\text{ EVLW }}\\ &\quad +\,{\text{ ITBV}}\end{aligned}$$
(2)
$${\text{ITTV/CO }} = MTt$$
(3)
DSt (s):
$${\text{ITBV }} = \, 1.25 \, \times {\text{ GEDV}}$$
(1)
$${\text{ITTV }} = {\text{ EVLW }} + {\text{ ITBV}}$$
(2)
$$\begin{aligned} &{\text{Pulmonary Thermal Volume }}\left( {\text{PTV}} \right) \, = {\text{ ITTV }}\\ &\quad {-}{\text{ GEDV}} \end{aligned}$$
(3)
$${\text{PTV/CO }} = DSt$$
(4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellner, P., Schleusener, V., Bauerfeind, F. et al. Influence of different infracardial positions of central venous catheters in hemodynamic monitoring using the transpulmonal thermodilution method. J Clin Monit Comput 30, 629–640 (2016). https://doi.org/10.1007/s10877-015-9762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9762-z

Keywords

Navigation