Skip to main content
Log in

The Concept and Building of a Simulation Device to Check the Cardiac Output Measurement Through the Pulmonary Artery Catheter

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

In this article, the authors present the building of a new cardiac output (CO) simulator that aims to provide a reliable pre-surgical test of instruments used by clinical teams to measure the patient’s condition during pulmonary artery catheterization. This procedure applies the thermodilution method, in which the Swan-Ganz catheter (also known as pulmonary artery catheter) and the hemodynamic monitor are used to collect real-time patient data. The authors designed, built, and tested a system containing both hardware and software prototypes to simulate the human body and cardiac monitor performances. The shortcoming of current simulators available commercially in the market is related to the fact that they generate electrical signals for the input of the cardiac monitor, reproducing the variations of the temperature sensor (thermistor) of the pulmonary artery catheter, but not physically providing the thermodilution curve for the sensor. The novelty of this project compared to existing simulators is the creation of a device with superior environment testing capabilities, covering the entire system with catheter and cardiac monitor connected, physically creating temperature variations on the catheter’s sensor and at the same time reproducing the cardiac output monitor calculation in the computer. The prototype showed similar accuracy compared to existing simulators of ± 0.1 L/min approximately (considering a total of 18 trials with standard deviation of 0.05745 L/min), but with the competitive advantage of creating the thermodilution curve for the catheter’s thermistor with real temperature environment and calculating CO value in real time. The prototype was able to provide similar simulation options as the software database contains a large range of catheter models, injectate volumes, injectate temperatures, and computation constants compared to the literature from MicroSim COS®, SimSlim® SL-8, PS-2200® Series, AMPS-1®, Seculife PS300®, ProSim® 3, and ProSim® 8 simulators. With such a pre-surgical test equipment, the irregularities in the cardiac output invasive monitoring system, and more specifically the limitations in the current method of checking the accuracy of the pulmonary artery catheter’s temperature sensor and CO monitor’s calibration, could be identified and mitigated before the catheterization. Thus, it could avoid complications (e.g., malfunction and infections), reducing costs and delays in medical treatments due to non-calibrated devices which are not in proper conditions of functioning for ICU staff and healthcare teams. Beyond it, the developed simulator can be used as educational tool for cardiac catheterization, helping to train medical and clinical professionals and contributing to the design iteration of new cardiac simulation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Clinical Gate (2015) [344]

Fig. 2
Fig. 3

Source Authors (2023)

Fig. 4

Source Authors (2023)

Fig. 5

Source The authors (2023)

Fig. 6

Source: Liu et al. [205]

Fig. 7

Source The authors (2023)

Fig. 8

Source The authors (2023)

Fig. 9

Source The authors (2023)

Fig. 10

Source The authors (2023)

Fig. 11

Source Authors (2023)

Fig. 12

Source Authors (2023)

Fig. 13

Source Authors (2023)

Fig. 14

Source The authors (2023)

Fig. 15

Source Authors (2023)

Fig. 16

Source Authors (2023)

Fig. 17

Source Authors (2023)

Fig. 18

Source The authors (2023)

Fig. 19

Source The authors (2023)

Similar content being viewed by others

Data Availability

Supplementary data are available upon reasonable request. Further inquiries can be directed to the corresponding author.

References

  1. World Health Organization. Cardiovascular disease (CVDs) (2021). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 10 July 2023

  2. Centers for Disease Control and Prevention. Heart Disease Facts (2023). https://www.cdc.gov/heartdisease/facts.htm. Accessed 10 July 2023

  3. J.V. Diaz, E.D. Riviello, A. Papali et al., Global critical care: moving forward in resource-limited settings. Ann. Glob. Health 85(1), 11 (2019). https://doi.org/10.5334/aogh.2413

    Article  Google Scholar 

  4. A.D. Shaw, M.G. Mythen, D. Shook et al., Pulmonary artery catheter use in adult patients undergoing cardiac surgery: a retrospective, cohort study. Perioper. Med. 7(24), 1–11 (2018). https://doi.org/10.1186/s13741-018-0103-x

    Article  Google Scholar 

  5. M.R. Pinsky, J.-L. Teboul, J.-L. Vincent, Hemodynamic Monitoring (Springer, New York, 2019), p.479. https://doi.org/10.1007/978-3-319-69269-2

    Book  Google Scholar 

  6. Fluke Biomedical. ProSim 8 Vital Signs Simulator Technical Data, p. 12 (2013). https://www.flukebiomedical.com/sites/default/files/resources/Prosim8_ENG_I_W.PDF. Accessed 10 July 2023

  7. A. Yartsev, Measurement of cardiac output by indicator dilution. In: Deranged Physiology (2015–2020). https://derangedphysiology.com/main/cicm-primary-exam/required-reading/cardiovascular-system/Chapter%20810/measurement-cardiac-output-indicator-dilution. Accessed 10 July 2023

  8. Edwards Lifesciences Corporation. Normal hemodynamic parameters and laboratory values. PP—US-2312 v2.0, Mar 2022, p. 4 (2022). https://educationgb.edwards.com/normal-hemodynamic-parameters-pocket-card/1167897#swan-ganz. Accessed 10 July 2023

  9. E.E. Argueta, D. Paniagua, Thermodilution cardiac output—a concept over 250 years in the making. Cardiol. Rev. 27(3), 138–144 (2019). https://doi.org/10.1097/CRD.0000000000000223

    Article  Google Scholar 

  10. E. Robin, M. Costecalde, G. Lebuffe et al., Clinical relevance of data from the pulmonary artery catheter. Crit. Care 10(3), 1–10 (2006). https://doi.org/10.1186/cc4830

    Article  Google Scholar 

  11. K. Scales, E. Collie, A practical guide to using pulmonary artery catheters. Nurs. Stand. 21(43), 42–48 (2007). https://doi.org/10.7748/NS2007.07.21.43.42.C4577

    Article  Google Scholar 

  12. I.T. Bootsma, E.C. Boerma, F. de Lange et al., The contemporary pulmonary artery catheter. Part 1: placement and waveform analysis. J. Clin. Monit. Comput. 36, 5–15 (2021). https://doi.org/10.1007/s10877-021-00662-8

    Article  Google Scholar 

  13. Research and Markets. Global Pulmonary Artery Catheter Market Report and Forecast 2023–2031. p. 147 (2023). https://www.researchandmarkets.com/reports/5805721/global-pulmonary-artery-catheter-market-report. Accessed 10 July 2023

  14. M. Stevens, T. Davis, S.H. Munson et al., Short and mid-term economic impact of pulmonary artery catheter use in adult cardiac surgery: a hospital and integrated health system perspective. ClinicoEconomics Outcomes Res. 13, 109–119 (2021)

    Article  Google Scholar 

  15. Practice guidelines for pulmonary artery catheterization, An updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 99(4), 988–1014 (2003). https://doi.org/10.1097/00000542-200310000-00036

    Article  Google Scholar 

  16. Edwards Lifesciences Corporation. Advanced Hemodynamic Monitoring Swan-Ganz Pulmonary Artery Catheter (2022). https://edwardsprod.blob.core.windows.net/media/Default/devices/monitoring/hemodynamic%20monitoring/swan-ganz_poster.pdf. Accessed 10 June 2023

  17. W. Ganz, R. Donoso, H.S. Marcus et al., A new technique for measurement of cardiac output by thermodilution in man. Am. J. Cardiol. 27(4), 392–396 (1971). https://doi.org/10.1016/0002-9149(71)90436-X

    Article  CAS  Google Scholar 

  18. W. Ganz, H.J.C. Swan, Measurement of blood flow by thermodilution. Am. J. Cardiol. 29(2), 241–246 (1972). https://doi.org/10.1016/0002-9149(72)90635-2

    Article  CAS  Google Scholar 

  19. A. Yartsev, Thermodilution measurement of cardiac output by PA catheter. In: Deranged Physiology (2015–2022). https://derangedphysiology.com/main/cicm-primary-exam/required-reading/cardiovascular-system/Chapter%20813/thermodilution-measurement-cardiac-output-pa-catheter. Accessed 10 June 2023

  20. V.K. Arya, W. Al-Moustadi, V. Dutta, Cardiac output monitoring—invasive and noninvasive. Curr. Opin. Crit. Care 28(3), 340–347 (2022). https://doi.org/10.1097/MCC.0000000000000937

    Article  Google Scholar 

  21. J. Kobe, N. Mishra, V.K. Arya et al., Cardiac output monitoring: Technology and choice. Ann. Cardiac Anaesth. 22, 6–17 (2019). https://doi.org/10.4103/aca.ACA_41_18

    Article  Google Scholar 

  22. M. Flick, A. Joosten, T.W.L. Scheeren et al., Haemodynamic monitoring and management in patients having noncardiac surgery: a survey among members of the European Society of Anaesthesiology and Intensive Care. Eur. J. Anaesthesiol. Intensive Care Med. 2, e0017 (2023). https://doi.org/10.1097/EA9.0000000000000017

    Article  Google Scholar 

  23. T.W.L. Scheeren, M.A.E. Ramsay, New developments in hemodynamic monitoring. J. Cardiothorac. Vasc. Anesth. 33, S67–S72 (2019). https://doi.org/10.1053/j.jvca.2019.03.043

    Article  Google Scholar 

  24. B. Saugel, J.L. Vincent, Cardiac output monitoring: how to choose the optimal method for the individual patient. Cur. Opin. Crit. Care 24(3), 165–172 (2018). https://doi.org/10.1097/MCC.0000000000000492

    Article  Google Scholar 

  25. X. Monnet, J.-L. Teboul, Transpulmonary thermodilution: advantages and limits. Crit. Care 21, 147 (2017). https://doi.org/10.1186/s13054-017-1739-5

    Article  Google Scholar 

  26. R.H. Thiele, K. Bartels, T.J. Gan, Cardiac output monitoring: a contemporary assessment and review. Crit. Care Med. 43(1), 177–185 (2015). https://doi.org/10.1097/CCM.0000000000000608

    Article  Google Scholar 

  27. L. Sangkum, G.L. Liu, L. Yu et al., Minimally invasive or noninvasive cardiac output measurement: an update. J. Anesth. 30(3), 461–480 (2016). https://doi.org/10.1007/s00540-016-2154-9

    Article  Google Scholar 

  28. J.A. Alhashemi, M. Cecconi, C.K. Hofer, Cardiac output monitoring: an integrative perspective. Crit. Care 15, 214 (2011). https://doi.org/10.1186/cc9996

    Article  Google Scholar 

  29. D.A. Reuter, C. Huang, T. Edrich, S.K. Shernan, H.K. Eltzschig, Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth. Analg. 110(3), 799–811 (2010). https://doi.org/10.1213/ANE.0b013e3181cc885a

    Article  Google Scholar 

  30. Edwards Lifesciences Corporation. A comprehensive hemodynamic profile to guide your treatment strategy. PP--US-2029 v3.0 4 p (2020). https://edwardsprod.blob.core.windows.net/media/Br/devices/monitoring/hemodynamic%20monitoring/swan-ganz_brochure.pdf. Accessed 10 July 2023

  31. G.A. Hernandez, A. Lemor, V. Blumer, C.A. Rueda, S. Zalawadiya, L.W. Stevenson, J. Lindenfeld, Trends in utilization and outcomes of pulmonary artery catheterization in heart failure with and without cardiogenic shock. J. Card. Fail. 25(5), 364–371 (2019). https://doi.org/10.1016/j.cardfail.2019.03.004

    Article  Google Scholar 

  32. S. Rosenkranz, I.R. Preston, Right heart catheterisation: best practice and pitfalls in pulmonary hypertension. Eur. Respir. Rev. 24(138), 642–652 (2015). https://doi.org/10.1183/16000617.0062-2015

    Article  Google Scholar 

  33. D.C. Evans, V.A. Doraiswamy, M.P. Prosciak et al., Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand. J. Surg. 98(4), 199–208 (2009). https://doi.org/10.1177/145749690909800402

    Article  CAS  Google Scholar 

  34. B. Shin, T.C. McAslam, R.J. Ayella, Problems with measurement using the Swan-Ganz catheter. Anesthesiology 43(4), 474–476 (1975). https://doi.org/10.1097/00000542-197510000-00012

    Article  CAS  Google Scholar 

  35. C.G. Elliott, G.A. Zimmerman, T.P. Clemmer, Complications of pulmonary artery catheterization in the care of critically ill: a prospective study. Chest 76(6), 647–652 (1979). https://doi.org/10.1378/chest.76.6.647

    Article  CAS  Google Scholar 

  36. M.J. Sise, P. Hollingsworth, J.E. Brimm et al., Complications of the flow-directed pulmonary artery catheter: a prospective analysis in 219 patients. Crit. Care Med. 9(4), 315–318 (1981). https://doi.org/10.1097/00003246-198104000-00006

    Article  CAS  Google Scholar 

  37. M.C. Bessette, L. Quintin, D.G. Whalley et al., Swan-Ganz catheter contamination: a protective sleeve for repositioning. Can. Anaesth. Soc. J. 28(1), 86–88 (1981). https://doi.org/10.1007/BF03007298

    Article  CAS  Google Scholar 

  38. K.D. Boyd, S.J. Thomas, J. Gold et al., A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 84(3), 245–249 (1983). https://doi.org/10.1378/chest.84.3.245

    Article  CAS  Google Scholar 

  39. F.W. Campbell, A.J. Schwartz, Pulmonary artery catheter malfunction? Anesthesiology 60(5), 513–514 (1984). https://doi.org/10.1097/00000542-198405000-00036

    Article  CAS  Google Scholar 

  40. S.A. Shenaq, G.P. Noon, J.L. Zamora et al., Unusual complication of Swan-Ganz catheter requiring mediastinotomy. S. Med. J. 77(10), 1339 (1984). https://doi.org/10.1097/00007611-198410000-00039

    Article  CAS  Google Scholar 

  41. M.L. Myers, T.W. Austin, W.J. Sibbald, Pulmonary artery catheter infections: a prospective study. Ann. Surg. 201(2), 237–241 (1985)

    Article  CAS  Google Scholar 

  42. J. Damen, D. Bolton, A prospective analysis of 1400 pulmonary artery catheterizations in patients undergoing cardiac surgery. Acta Anesthesiol. Scand. 30(5), 386–392 (1986). https://doi.org/10.1111/j.1399-6576.1986.tb02436.x

    Article  CAS  Google Scholar 

  43. J.I. Gotchall, L. Comried, G. Bredlau et al., Evaluation of an inaccurate pulmonary artery catheter thermistor. Chest 96(4), 941–943 (1989). https://doi.org/10.1378/chest.96.4.941

    Article  CAS  Google Scholar 

  44. M.M. Zion, J. Balkin, D. Rosenmann et al., Use of pulmonary artery catheters in patients with acute myocardial infarction. Analysis of experience in 5841 patients in the SPRINT Registry. SPRINT Study Group. Chest 98(6), 1331–1335 (1990). https://doi.org/10.1378/chest.98.6.1331

    Article  CAS  Google Scholar 

  45. L.A. Mermel, R.D. McCormick, S.R. Springman et al., The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am. J. Med. 91(3B), 197S-205S (1991). https://doi.org/10.1016/0002-9343(91)90369-9

    Article  CAS  Google Scholar 

  46. V.R. Patla, C. Lorenzi, J.P. Benson et al., A faulty pulmonary artery flotation catheter. Anaesthesia 48, 828–828 (1993). https://doi.org/10.1111/j.1365-2044.1993.tb07618.x

    Article  CAS  Google Scholar 

  47. T. Nishikawa, S. Dohi, Errors in the measurement of cardiac output by thermodilution. Can. J. Anaesthes. 40(2), 142–153 (1993). https://doi.org/10.1007/BF03011312.pdf

    Article  CAS  Google Scholar 

  48. L.A. Mermel, D. Maki, Infectious complications of Swan-Ganz pulmonary artery catheters. Pathogenesis, epidemiology, prevention, and management. Am. J. Respir. Crit. Care Med. 149(4 Pt 1), 1020–1036 (1994). https://doi.org/10.1164/ajrccm.149.4.8143037

    Article  CAS  Google Scholar 

  49. S. Kiyama, A dampened waveform due to a faulty pulmonar artery catheter. Anaesthesia 50(6), 566 (1995). https://doi.org/10.1111/j.1365-2044.1995.tb06061.x

    Article  CAS  Google Scholar 

  50. T.J. Kearney, M.M. Shabot, Pulmonary artery rupture associated with the Swan-Ganz catheter. Chest 108(5), 1349–1352 (1995). https://doi.org/10.1378/chest.108.5.1349

    Article  CAS  Google Scholar 

  51. A.F. Connors Jr., T. Speroff, N.V. Dawson et al., The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276(11), 889–897 (1996). https://doi.org/10.1001/jama.276.11.889

    Article  Google Scholar 

  52. S. Colbert, D.M. O’Hanlon, D.S. Quill et al., Swan-Ganz catheter—all in a knot. Eur. J. Anaesthesiol. 14(5), 518–520 (1997). https://doi.org/10.1046/j.1365-2346.1997.00201.x

    Article  CAS  Google Scholar 

  53. J. Rello, P. Jubert, M.E. Esandi et al., Specific problems of arterial, swan-ganz, and hemodialysis catheters. Nutrition 13(4), 36S-41S (1997). https://doi.org/10.1016/s0899-9007(97)00221-9

    Article  CAS  Google Scholar 

  54. R. Kodavatiganti, C.J. Hearn, S.R. Insler, Bleeding from a pulmonary artery catheter temperature connection port. J. Cardiothorac. Vasc. Anesth. 13(1), 75–77 (1999). https://doi.org/10.1016/S1053-0770(99)90179-9

    Article  CAS  Google Scholar 

  55. I.C. Baldwin, M. Heland, Incidence of cardiac dysrhythmias in patients during pulmonary artery catheter removal after cardiac surgery. Heart Lung 29(3), 155–160 (2000). https://doi.org/10.1067/mhl.2000.106937

    Article  CAS  Google Scholar 

  56. R. Ivanov, J. Allen, J.E. Calvin, The incidence of major morbidity in critically ill patients managed with pulmonary artery catheters: a meta-analysis. Crit. Care Med. 28(3), 615–619 (2000). https://doi.org/10.1097/00003246-200003000-00002

    Article  CAS  Google Scholar 

  57. G.R. Manecke, J.C. Brown, A.A. Landau et al., An unusual case of pulmonary artery catheter malfunction. Anesth. Analg. 95(2), 302–304 (2002). https://doi.org/10.1097/00000539-200208000-00008

    Article  Google Scholar 

  58. M.C. Lopes, R. de Cleva, B. Zilberstein et al., Pulmonary artery catheter complications: report on a case of a knot accident and literature review. Rev. Hosp. Clín. Fac. Med. 59(2), 77–85 (2004). https://doi.org/10.1590/S0041-87812004000200006

    Article  Google Scholar 

  59. S. Harvey, D.A. Harrison, M. Singer et al., Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. The Lancet 366(9484), 472–477 (2005). https://doi.org/10.1016/S0140-6736(05)67061-4

    Article  Google Scholar 

  60. M. Hadian, M.R. Pinsky, Evidence-based review of the use of the pulmonary artery catheter: impact data and complications. Crit. Care 10(Suppl 3), 1–11 (2006). https://doi.org/10.1186/cc4834

    Article  Google Scholar 

  61. S.E. Harvey, C.A. Welch, D.A. Harrison et al., Post hoc insights from PAC-Man—the U.K. pulmonary artery catheter trial. Crit. Care Med. 36(6), 1714–1721 (2008). https://doi.org/10.1097/CCM.0b013e318174315d

    Article  Google Scholar 

  62. A. Katsikis, G. Karavolias, V. Voudris, Transfemoral percutaneous removal of a knotted Swan-Ganz catheter. Catheter. Cardiov. Interv. 74(5), 802–804 (2009). https://doi.org/10.1002/ccd.22201

    Article  Google Scholar 

  63. W.-H. Chan, C.-H. Hsu, C.-C. Lu et al., Early recognition of an entrapped pulmonary artery catheter by blood leaking into the syringe and thermistor connector during cardiac surgery. Acta Anaesthesiol. Taiwan. 50(1), 38–40 (2012). https://doi.org/10.1016/j.aat.2012.03.003

    Article  Google Scholar 

  64. M. Ishaq, N. Alexander, D.H.T. Scott, Successful retrieval of a knotted pulmonary artery catheter trapped in a tricuspid valve apparatus. Saudi J. Anaesth. 7(2), 191–193 (2013). https://doi.org/10.4103/1658-354X.114048

    Article  Google Scholar 

  65. S.-K. Park, N.-S. Gil, H.-G. Ryu, A misplaced and entrapped pulmonary artery catheter. Korean J. Anesthesiol. 64(4), 380–381 (2013)

    Article  Google Scholar 

  66. P.E. Marik, Obituary: pulmonary artery catheter 1970 to 2013. Ann. Intensive Care 3, 1–6 (2013). https://doi.org/10.1186/2110-5820-3-38

    Article  Google Scholar 

  67. U.K. Gidwani, B. Mohanty, K. Chatterjee, The pulmonary artery catheter: a critical reappraisal. Cardiol. Clin. 31(4), 545–565 (2013). https://doi.org/10.1016/j.ccl.2013.07.008

    Article  Google Scholar 

  68. H.J. Lee, N. Kim, H. Lee et al., Persistent left superior vena cava detected incidentally after pulmonary artery catheterization. KJCCM 30(1), 22–26 (2015). https://doi.org/10.4266/kjccm.2015.30.1.22

    Article  Google Scholar 

  69. E.Y. Brovman, R.A. Gabriel, R.P. Dutton et al., Pulmonary artery catheter use during cardiac surgery in the United States, 2010 to 2014. J. Cardiothorac. Vasc. Anesth. 30(3), 579–584 (2016). https://doi.org/10.1053/j.jvca.2015.11.012

    Article  Google Scholar 

  70. K. Slicker, W.G. Lane, O.O. Oyetano et al., Daily cardiac catheterization procedural volume and complications at an academic medical center. Cardiovasc. Diagn. Ther. 6, 446–452 (2016). https://doi.org/10.21037/cdt.2016.05.02

    Article  Google Scholar 

  71. I.T. Bootsma, E.C. Boerma, T.W.L. Scheeren et al., The contemporary pulmonary artery catheter. Part 2: measurements, limitations, and clinical applications. J. Clin. Monit. Comput. 36, 17–31 (2021). https://doi.org/10.1007/s10877-021-00673-5

    Article  Google Scholar 

  72. N. Takai, A. Kambara, J. Iemura et al., Damage to pulmonary artery catheter in cardiac surgery causing inadequate pulmonary artery pressure waveform. Cardiov. Anesth. 25(1), 75–78 (2021)

    Google Scholar 

  73. A. Yartsev, Causes of inaccurate thermodilution cardiac output measurements. In: Deranged Physiology (2015–2023). https://derangedphysiology.com/main/required-reading/equipment-and-procedures/Chapter%20236/causes-inaccurate-thermodilution-cardiac-output-measurements. Accessed 14 July 2023

  74. Netech Corporation. MicroSim COS—Cardiac Output Simulator Operating Manual, p. 16 (2011). https://www.netechbiomedical.com/image/catalog/pdf/microsim_cos_1111_user_manual.pdf. Accessed 10 July 2023

  75. Pronk Technologies. Specifications SimSlim Model SL-8, p. 2 (2020). https://www.pronktech.com/wp-content/uploads/2020/07/SimSlim-SL-8-Specifications-2020-04-14.pdf. Accessed 11 July 2023

  76. Pronk Technologies. SimSlim Patient Simulator Operator’s Manual (2017). https://www.pronktech.com/wp-content/uploads/2015/02/501-0607-SIMSLIMMANUAL-REV-L.pdf. Accessed 9 July 2023

  77. BC Group International. PS2200 Series Specification Sheet—Multi-Parameter Simulators. Brochure, p. 2 p (2020). https://www.bcgroupstore.com/Assets/PDF/DataSheets/BCBiomedicalPS2200SeriesSpecSheet.pdf. Accessed 10 July 2023

  78. BC Biomedical. Multi-Parameter Patient Simulator PS-2200 Series User Manual, p. 78 (2020). https://www.bcgroupstore.com/Assets/PDF/manuals/PS-2200_User_Manual.pdf. Accessed 10 July 2023

  79. Datrend Systems Incorporated. AMPS-1 Advanced Modular Patient Simulator, p. 2 (2016). https://www.datrend.com/download.php?file=AMPS-1_Spec_Oct_2016.pdf. Accessed 10 July 2023

  80. Datrend Systems Incorporated. AMPS-1 Advanced Modular Patient Simulator Operating Manual, p. 100 (2021). https://www.datrend.com/download.php?file=MN-053f-6100-453-AMPS-1-Operators-Manual.pdf. Accessed 11 July 2023

  81. Gossen Metrawatt. SECULIFE PS300 Multi-Patient Simulator, p. 62 (2013). https://www.gmc-instruments.de/media/doku/pm/seculife-ps300/seculife-ps300-ba_gb.pdf. Accessed 10 July 2023

  82. Fluke Biomedical. ProSim 2/3 User’s Manual. Rev. 1, p. 60 (2013). https://www.flukebiomedical.com/sites/default/files/resources/prosim3_umeng0100.pdf. Accessed 10 July 2023

  83. Fluke Biomedical. ProSim 8 Vital Sign Simulator. Users Manual (2011). https://www.flukebiomedical.com/sites/default/files/resources/prosim8_umeng0300.pdf. Accessed 10 July 2023

  84. Society for Science. Intel International Science and Engineering Fair 2012 Program. 148 p. Simdeb II project on p. 61 (2012). https://sspcdn.blob.core.windows.net/files/Documents/SEP/ISEF/2012/Program-Book.pdf. Accessed 10 July 2023

  85. C.F.T. Abreu, Simdeb II—Simulador de débito cardíaco (abstract in portuguese, p. 179). In: Mostratec. Resumos da Mostratec v.3, 2011, p. 309 (2011). https://www.mostratec.com.br/wp-content/uploads/2020/08/resumo_da_mostratec_v._3_2011.pdf. Accessed 11 July 2023

  86. C.F.T. Abreu, D. Johann, Simdeb—Simulador de débito cardíaco (abstract in portuguese, p. 217). In: Mostratec. Resumos da Mostratec v.2, 2010, p. 302 (2010). https://www.mostratec.com.br/wp-content/uploads/2020/08/resumos_da_mostratec_v._2_2010.pdf. Accessed 11 July 2023

  87. W.F. Hamilton, J.W. Moore, J.M. Kinsman et al., Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to the cardiac output. Am. J. Physiol. 84(2), 338–344 (1928). https://doi.org/10.1152/ajplegacy.1928.84.2.338

    Article  CAS  Google Scholar 

  88. G. Fegler, Measurement of cardiac output in anaesthetized animals by a thermodilution method. Q. J. Exp. Physiol. Cogn. Med. Sci. 39(3), 153–164 (1954). https://doi.org/10.1113/expphysiol.1954.sp001067

    Article  CAS  Google Scholar 

  89. T. Cooper, E. Braunwald, G.C. Riggles et al., Thermal dilution curves in the study of circulatory shunts: instrumentation and clinical applications. Am. J. Cardiol. 6(6), 1065–1069 (1960). https://doi.org/10.1016/0002-9149(60)90362-3

    Article  CAS  Google Scholar 

  90. E. Evonuk, C.J. Imig, W. Greenfield, J.W. Eckstein, Cardiac output measured by thermal dilution of room temperature injectate. J. Appl. Physiol. 16, 271–275 (1961). https://doi.org/10.1152/jappl.1961.16.2.271

    Article  CAS  Google Scholar 

  91. K.L. Zierler, Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res. 10, 393 (1962). https://doi.org/10.1161/01.RES.10.3.393

    Article  Google Scholar 

  92. K. Pávek, D. Boska, F.V. Selecký, Measurement of cardiac output by thermodilution with constant rate injection of indicator. Circ. Res. 15, 311–319 (1964). https://doi.org/10.1161/01.res.15.4.311

    Article  Google Scholar 

  93. G.W. James, M.H. Paul, H.U. Wessel, Thermal dilution: instrumentation with thermistors. J. Appl. Physiol. 20(3), 547–552 (1965). https://doi.org/10.1152/jappl.1965.20.3.547

    Article  CAS  Google Scholar 

  94. E. Rapaport, Usefulness and limitations of thermal washout technics in ventricular volume measurements. Am. J. Cardiol. 18, 226–234 (1966). https://doi.org/10.1016/0002-9149(66)90035-X

    Article  Google Scholar 

  95. C.R. Salgado, P.M. Galletti, In vitro evaluation of the thermodilution technique for the measurement of ventricular stroke volume and end-diastolic volume. Cardiologia 49(2), 65–78 (1966). https://doi.org/10.1159/000168893

    Article  CAS  Google Scholar 

  96. G.A. Cropp, Measurements of variable ventricular output by thermodilution: model experiments. J. Appl. Physiol. 21(5), 1624–1632 (1966). https://doi.org/10.1152/jappl.1966.21.5.1624

    Article  CAS  Google Scholar 

  97. J.C.P. Williams, T.P.B. O’Donovan, E.H. Wood, A method for the calculation of areas under indicator-dilution curves. J. Appl. Physiol. 21(2), 695–699 (1966). https://doi.org/10.1152/jappl.1966.21.2.695

    Article  CAS  Google Scholar 

  98. H.J. Swan, W. Ganz, J. Forrester et al., Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N. Engl. J. Med. 283(9), 447–451 (1970). https://doi.org/10.1056/NEJM197008272830902

    Article  CAS  Google Scholar 

  99. B. Olsson, J. Pool, P. Vandermoten et al., Validity and reproducibility of determination of cardiac output by thermodilution in man. Cardiology 55(3), 136–48 (1970). https://doi.org/10.1159/000169277

    Article  CAS  Google Scholar 

  100. E. Pavek, K. Pavek, D. Boska, Mixing and observation errors in indicator-dilution studies. J. Appl. Physiol. 28(6), 733–740 (1970). https://doi.org/10.1152/jappl.1970.28.6.733

    Article  CAS  Google Scholar 

  101. M.E. Sanmarco, C.M. Philips, L.A. Marquez et al., Measurement of cardiac output by thermal dilution. Am. J. Cardiol. 28(1), 54–58 (1971). https://doi.org/10.1016/0002-9149(71)90034-8

    Article  CAS  Google Scholar 

  102. H.U. Wessel, M.H. Paul, G.W. James et al., Limitations of thermal dilution curves for cardiac output determinations. J. Appl. Physiol. 30(5), 643–652 (1971). https://doi.org/10.1152/jappl.1971.30.5.643

    Article  CAS  Google Scholar 

  103. K.-E. Arfors, P. Malmberg, K. Pavek, Conservation of thermal indicator in lung circulation. Cardiovasc. Res. 5(4), 530–534 (1971). https://doi.org/10.1093/cvr/5.4.530

    Article  CAS  Google Scholar 

  104. R.F. Leighton, J. Czekajewski, Use of a new cardiac output computer for human hemodynamics studies. J. Appl. 30(6), 914–916 (1971). https://doi.org/10.1152/jappl.1971.30.6.914

    Article  CAS  Google Scholar 

  105. J.S. Forrester, W. Ganz, G. Diamond et al., Thermodilution cardiac output determination with single flow-directed catheter. Am. Heart J. 83(3), 306–311 (1972). https://doi.org/10.1016/0002-8703(72)90429-2

    Article  CAS  Google Scholar 

  106. E.M. Wilson, A.J. Ranieri Jr., O.L. Updike et al., An evaluation of thermal dilution for obtaining serial measurements of cardiac output. Med. Biol. Eng. 10, 179–191 (1972). https://doi.org/10.1007/BF02474108

    Article  CAS  Google Scholar 

  107. R.J. Ellis, J. Gold, J.R. Rees et al., Computerized monitoring of cardiac output by thermal dilution. JAMA 220(4), 507–511 (1972). https://doi.org/10.1001/jama.1972.03200040029006

    Article  CAS  Google Scholar 

  108. K. Tamura, Y. Arai, H. Murooka, The rapid-estimation of the area under the thermodilution curve. Jpn. Heart J. 14(4), 306–313 (1973)

    Article  CAS  Google Scholar 

  109. H. Meisner, S. Haql, W. Heimish et al., Evaluation of the thermodilution method for measurement of cardiac output after open-heart surgery. Ann. Thorac. Surg. 18(5), 504–515 (1974). https://doi.org/10.1016/s0003-4975(10)64393-7

    Article  CAS  Google Scholar 

  110. M. Andreen, Computerized measurement of cardiac output by thermodilution: methodological aspects. Acta Anaesthesiol. Scand. 18(4), 297–305 (1974). https://doi.org/10.1111/j.1399-6576.1974.tb01183.x

    Article  CAS  Google Scholar 

  111. R.L. Berger, R.D. Weisel, L. Vito et al., Cardiac output measurement by thermodilution during cardiac operations. Ann. Thorac. Surg. 21(1), 43–47 (1976). https://doi.org/10.1016/s0003-4975(10)64886-2

    Article  CAS  Google Scholar 

  112. J. Beyer, J.J. Lamberti, R.L. Replogle, Validity of thermodilution cardiac output determination: experimental studies with and without pulmonary insufficiency. J. Surg. Res. 21(5), 313–317 (1976). https://doi.org/10.1016/0022-4804(76)90043-3

    Article  CAS  Google Scholar 

  113. L.H. Snoeckx, J.L. Verheyen, A. Van de Water et al., On-line computation of cardiac output with the thermodilution method, using a digital minicomputer. Cardiovasc. Res. 10(5), 556–564 (1976). https://doi.org/10.1093/cvr/10.5.556

    Article  CAS  Google Scholar 

  114. F.H. Kohanna, J.N. Cunningham Jr., Monitoring of cardiac output by thermodilution after open-heart surgery. J. Thorac. Cardiovasc. Surg. 73(3), 451–457 (1977)

    Article  CAS  Google Scholar 

  115. J. Davis, Flow bench for the evaluation of thermal dilution cardiac output computers. J. Extra-Corp Tech. 9(4), 187–195 (1977)

    Article  Google Scholar 

  116. G.M. White, C.N. Murthy, A computer program for the on-line computation of cardiac output from thermodilution curves. Comput. Prog. Biomed. 7(1), 37–40 (1977). https://doi.org/10.1016/0010-468x(77)90034-4

    Article  CAS  Google Scholar 

  117. C.T. Dizon, W.A. Gezari, P.G. Barash et al., Hand held thermodilution cardiac output injector. Crit. Care Med. 5(4), 210–212 (1977). https://doi.org/10.1097/00003246-197707000-00011

    Article  CAS  Google Scholar 

  118. B.L. Hoel, Some aspects of the clinical use of thermodilution in measuring cardiac output. With particular reference to the Swan-Ganz thermodilution catheters. Scand. J. Clin. Lab Invest. 38(4), 383–388 (1978). https://doi.org/10.3109/00365517809108438

    Article  CAS  Google Scholar 

  119. A.P. Fischer, A.M. Benis, R.A. Jurado, E. Seely, P. Teirstein, R.S. Litwak, Analysis of errors in measurement of cardiac output by simultaneous dye and thermal dilution in cardiothoracic surgical patients. Cardiovasc. Res. 12(3), 190–199 (1978). https://doi.org/10.1093/cvr/12.3.190

    Article  CAS  Google Scholar 

  120. D.S. Moodie, R.H. Feldt, M.P. Kaye, D.A. Strelow, L.J. van der Hagen, Measurement of cardiac output by thermodilution: development of accurate measurements at flows applicable to the pediatric patient. J. Surg. Res. 25(4), 305–311 (1978). https://doi.org/10.1016/0022-4804(78)90123-3

    Article  CAS  Google Scholar 

  121. M. Wong, A. Skulsky, E. Moon, Loss of indicator in the thermodilution technique. Cathet. Cardiovasc. Diagn. 4(1), 103–109 (1978). https://doi.org/10.1002/ccd.1810040115

    Article  CAS  Google Scholar 

  122. J.M. Levett, R.L. Replogle, Thermodilution cardiac output: a critical analysis and review of the literature. J. Surg. Res. 27(6), 392–404 (1979). https://doi.org/10.1016/0022-4804(79)90159-8

    Article  CAS  Google Scholar 

  123. J.J. Stawicki, F.D. Holford, E.L. Michelson et al., Multiple cardiac output measurements in man. Evaluation of a new closed-system thermodilution method. Chest 76(2), 193–197 (1979). https://doi.org/10.1378/chest.76.2.193

    Article  CAS  Google Scholar 

  124. M.E. Kim, Y.C. Lin, Determination of catheter wall heat transfer in cardiac output measurement by thermodilution. Clin. Exp. Pharmacol. Physiol. 7(4), 383–389 (1980). https://doi.org/10.1111/j.1440-1681.1980.tb00086.x

    Article  CAS  Google Scholar 

  125. W.B. Runciman, A.H. Ilsey, J.G. Roberts, Thermodilution cardiac output—a systematic error. Anaesth. Intensive Care 9(2), 135–139 (1981). https://doi.org/10.1177/0310057X8100900206

    Article  CAS  Google Scholar 

  126. J.R. Plachetka, D.F. Larson, N.W. Salomon et al., Comparison of two closed systems for thermodilution cardiac outputs. Crit. Care Med. 9(6), 487–489 (1981). https://doi.org/10.1097/00003246-198106000-00011

    Article  CAS  Google Scholar 

  127. W.B. Runciman, A.H. Isley, J.G. Roberts, An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Anaesth. Intensive Care 9(3), 208–220 (1981). https://doi.org/10.1177/0310057X8100900302

    Article  CAS  Google Scholar 

  128. T.V. Bilfinger, C.-Y. Lin, C.D. Anagnostopoulos, In vitro determination of accuracy of cardiac output measurements by thermal dilution. J. Surg. Res. 33, 409–414 (1982). https://doi.org/10.1016/0022-4804(82)90056-7

    Article  CAS  Google Scholar 

  129. C.W. Stetz, R.G. Miller, G.E. Kelly et al., Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am. Rev. Respir. Dis. 126(6), 1001–1004 (1982). https://doi.org/10.1164/arrd.1982.126.6.1001

    Article  CAS  Google Scholar 

  130. U. Elkayam, R. Berkley, S. Azen et al., Cardiac output by thermodilution technique: effect of injectate’s volume and temperature on accuracy and reproducibility in the critically Ill patient. Chest 84(4), 418–422 (1983). https://doi.org/10.1378/chest.84.4.418

    Article  CAS  Google Scholar 

  131. F.G. Shellock, M.S. Riedinger, T.M. Bateman et al., Thermodilution cardiac output determination in hypothermic postcardiac surgery patients: room vs ice temperature injectate. Crit. Care Med. 11(8), 668–670 (1983). https://doi.org/10.1097/00003246-198308000-00018

    Article  CAS  Google Scholar 

  132. H.R. Kay, M. Afshari, P. Barash et al., Measurement of ejection fraction by thermal dilution techniques. J. Surg. Res. 34(4), 337–346 (1983). https://doi.org/10.1016/0022-4804(83)90081-1

    Article  CAS  Google Scholar 

  133. J.H. Philip, M.C. Long, M.D. Quinn et al., Continuous thermal measurement of cardiac output. IEEE Trans. Biomed. Eng. 31(5), 393–400 (1984). https://doi.org/10.1109/TBME.1984.325278

    Article  CAS  Google Scholar 

  134. G.F. Maruschak, J.F. Schauble, Limitations of thermodilution ejection fraction: degradation of frequency response by fast-response thermistors. Crit. Care Med. 13(8), 679–682 (1985). https://doi.org/10.1097/00003246-198508000-00015

    Article  CAS  Google Scholar 

  135. R.C. Wetzel, T.W. Latson, Major errors in thermodilution cardiac output measurements during rapid volume infusion. Anesthesiology 62(5), 684–687 (1985). https://doi.org/10.1097/00000542-198505000-00035

    Article  CAS  Google Scholar 

  136. R.G. Pearl, M.H. Rosenthal, L. Nielson et al., Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 64(6), 798–801 (1986). https://doi.org/10.1097/00000542-198606000-00021

    Article  CAS  Google Scholar 

  137. P.J.R. Jebson, W.S. Karkow, Pulsatile flow simulator for comparison of cardiac output measurements by electromagnetic flow meter and thermodilution. J. Clin. Monit. 2(1), 6–14 (1986). https://doi.org/10.1007/BF01619172

    Article  CAS  Google Scholar 

  138. J.D. Mackenzie, N.E. Haites, J.M. Rawles, Method of assessing the reproducibility of blood flow measurement: factors influencing the performance of thermodilution cardiac output computers. Br. Heart J. 55, 14–24 (1986). https://doi.org/10.1136/hrt.55.1.14

    Article  CAS  Google Scholar 

  139. S. Nadeau, W.H. Noble, Limitations of cardiac output measurements by thermodilution. Can. Anaesth. Soc. J. 33(6), 780–784 (1986). https://doi.org/10.1007/BF03027130.pdf

    Article  CAS  Google Scholar 

  140. S.L. Norris, E.G. King, M. Grace et al., Thermodilution cardiac output—an in vitro model of low flow states. Crit. Care Med. 14(1), 57–59 (1986). https://doi.org/10.1097/00003246-198601000-00013

    Article  CAS  Google Scholar 

  141. R. Long, L. Wood, I. Sznadjer, An in vitro calibration of the thermodilution method of cardiac output determination. J. Extra-Corporeal Technol. 9(2), 7 (1987)

    Google Scholar 

  142. J.F. Dhainaut, F. Brunet, J.F. Monsallier et al., Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit. Care Med. 15(2), 148–152 (1987). https://doi.org/10.1097/00003246-198702000-00014

    Article  CAS  Google Scholar 

  143. S.A. Conrad, M. Jones, P. Unkel. Thermodilution cardiac output and ejection fraction: a mathematical analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, pp. 1855–1856, v. 4 (1988). https://doi.org/10.1109/IEMBS.1988.95123

  144. H. Maruta, Y. Usuda, Y. Okutsu et al., A new closed-system using partially frozen injectate for thermodilution cardiac output determinations. J. Anesth. 3(1), 35–39 (1989). https://doi.org/10.1007/s0054090030035

    Article  CAS  Google Scholar 

  145. S.S. Saliterman, A computerized simulator for critical-care training: New Technology for Medical Education. Mayo Clinic Proc. 65(7), 968–978 (1990). https://doi.org/10.1016/s0025-6196(12)65158-1

    Article  CAS  Google Scholar 

  146. F.G. Spinale, J.L. Zellner, R. Mukherjee et al., Thermodilution right ventricular ejection fraction. Catheter positioning effects. Chest 98(5), 1259–1265 (1990). https://doi.org/10.1378/chest.98.5.1259

    Article  CAS  Google Scholar 

  147. R. Mukherjee, F.G. Spinale, A.F. von Recum et al., In vitro validation of a right ventricular thermodilution ejection fraction system. Ann. Biomed. Eng. 19, 165–177 (1991). https://doi.org/10.1007/BF02368467

    Article  CAS  Google Scholar 

  148. S.E. Ferris, M. Konno, In vitro validation of a thermodilution right ventricular ejection fraction method. J. Clin. Monit. 1992(8), 74–80 (1992). https://doi.org/10.1007/BF01618092

    Article  Google Scholar 

  149. K.A. Jarvis, M.J. Woliner, E.P. Steffey, Accuracy of the thermodilution method in estimating high flow—an in vitro study. J. Vet. Anaesth. 19(1), 41–45 (1992). https://doi.org/10.1111/j.1467-2995.1992.tb00084.x

    Article  Google Scholar 

  150. M.L. Dollar, M.L. Yelderman, M.D. Quinn et al., Evaluation of a continuous thermodilution cardiac output catheter. ASAIO J. 38(3), M351–M356 (1992). https://doi.org/10.1097/00002480-199207000-00053

    Article  CAS  Google Scholar 

  151. J.P. Mitchell, D. Schuller, F.S. Calandrino, D.P. Schuster, Improved outcome based on fluid management in critically Ill patients requiring pulmonary artery catheterization. Am. Rev. Respir. Dis. 145(5), 990–998 (1992). https://doi.org/10.1164/ajrccm/145.5.990

    Article  CAS  Google Scholar 

  152. L.E. Renner, M.J. Morton, G.Y. Sakuma, Indicator amount, temperature, and intrinsic cardiac output affect thermodilution cardiac output accuracy and reproducibility. Crit. Care Med. 21(4), 586–597 (1993). https://doi.org/10.1097/00003246-199304000-00021

    Article  CAS  Google Scholar 

  153. T. Segawa, M. Arakawa, K. Kambara et al., Correction for apparent prolongation of mean transit time resulting from response time in a thermodilution system. IEEE Trans. Biom. Eng. 40, 1–7 (1993). https://doi.org/10.1109/10.204765

    Article  CAS  Google Scholar 

  154. R.D. Zielstorff, et al., Providing clinicians with problem-based access to knowledge: troubleshooting pulmonary artery catheter waveforms. Proc Annu Symp Comput Appl Med Care, pp. 351–355 (1993). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248530/. Accessed 10 July 2023

  155. S. Cockroft, P.S. Withington, The measurement of right ventricular ejection fraction by thermodilution. A comparison of values obtained using differing injectate ports. Anaesthesia 48(4), 312–314 (1993). https://doi.org/10.1111/j.1365-2044.1993.tb06950.x

    Article  CAS  Google Scholar 

  156. J.E. Williams, S.E. Pfau, L.I. Deckelbaum, Effect of injectate temperature and thermistor position on reproducibility of thermodilution cardiac output determinations. Chest 106(3), 895–898 (1994). https://doi.org/10.1378/chest.106.3.895

    Article  Google Scholar 

  157. J. Hori, Y. Saitoh, T. Kiryu, Improvement of the time-domain response of a thermodilution sensor by the natural observation system. IEICE Trans. Fundam. E 77(5), 784–791 (1994)

    Google Scholar 

  158. T. Mihaljevic, L.K. von Segesser, M. Tönz et al., Continuous thermodilution measurement of cardiac output: in-vitro and in-vivo evaluation. Thorac. Cardiovasc. Surg. 42(1), 32–35 (1994). https://doi.org/10.1055/s-2007-1016451

    Article  CAS  Google Scholar 

  159. A. Rubini, D. Del Monte, V. Catena et al., Cardiac output measurement by the thermodilution method: an in vitro test of accuracy of three commercially available automatic cardiac output computers. Intensive Care Med. 21(2), 154–158 (1995). https://doi.org/10.1007/BF01726539

    Article  CAS  Google Scholar 

  160. O. Barnea, Hemo/thermodynamic model for analysis of thermodilution. Proc of the 19th annual IEEE/EMBS conference. Oct-Nov 1997, p. 4. (1997). https://doi.org/10.1109/IEMBS.1997.758796

  161. N. Gefen, O. Barnea, A. Abramovich, et al., Experimental assessment of error sources in thermodilution measurements of cardiac output and ejection fraction. p. 796. In: Proceeding of the First Joint BMES/EMBS Conference, Oct 13–16, Atlanta, USA, 1999. (1999). https://doi.org/10.1109/IEMBS.1999.803951

  162. K.G. Lehmann, M.S. Platt, Improved accuracy and precision of thermodilution cardiac output measurement using a dual thermistor catheter system. JACC 33(3), 9 (1999)

    Article  Google Scholar 

  163. I. dos Santos, A.F. da Rocha, F.A.O. Nascimento et al., Measurement of ejection fraction with standard thermodilution catheters. Med. Eng. Phys. 24(5), 325–335 (2002). https://doi.org/10.1016/S1350-4533(02)00026-7

    Article  Google Scholar 

  164. C.R. Humphrey, J.L. Cezeaux, S. Schreiner, The design and fabrication of a closed loop steady flow system for the study of thermodilution. Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342) (2002). https://doi.org/10.1109/NEBC.2002.999483

  165. P.G. Berthelsen, N. Eldrup, L.B. Nilsson et al., Thermodilution cardiac output. Cold vs room temperature injectate and the importance of measuring the injectate temperature in the right atrium. Acta Anaesthesiol. Scand. 46(9), 1103–1110 (2002). https://doi.org/10.1034/j.1399-6576.2002.460908.x

    Article  CAS  Google Scholar 

  166. M.P. Eason, M.S. Goodrow, J.E. Gillespie, A device to stimulate central venous cannulation in the human patient simulator. Anesthesia 99(1246), 10–11 (2003). https://doi.org/10.1097/00000542-200311000-00050

    Article  Google Scholar 

  167. L.B. Nilsson, J.C. Nilsson, L.T. Skovgaard, P.G. Berthelsen, Thermodilution cardiac output—are three injections enough? Acta Anaesthesiol. Scand. 48(10), 1322–1327 (2004). https://doi.org/10.1111/j.1399-6576.2004.00514.x

    Article  CAS  Google Scholar 

  168. M.P. Eason, M.D. Linville, C. Stanton, A system to stimulate arterial blood flow for cannulation in the human patient simulator. Anesthesiology 103(2), 443 (2005). https://doi.org/10.1097/00000542-200508000-00031

    Article  Google Scholar 

  169. A. Liu, Y. Bhasin, M. Fiorill, et al., The Design and Implementation of a Pulmonary Artery Catheterization Simulator. IOS Press, p. 5 (2005). https://www.simcen.org/pdf/liu%20mmvr2006.pdf. Accessed 10 July 2023

  170. A.F. da Rocha, I. dos Santos, F.A.O. Nascimento et al., Effects of the time response of the temperature sensor on thermodilution measurements. Physiol. Meas. 26, 885–901 (2005). https://doi.org/10.1088/0967-3334/26/6/001

    Article  Google Scholar 

  171. M.D.B. de Melo, Algoritmo para Recuperação de Sinais de Temperatura de Cateteres de Artéria Pulmonar. Univ Brasília, Depart Eng Elét, p. 115 (2007). https://repositorio.unb.br/bitstream/10482/2858/1/2007_MaxwellDiogenesBandeiradeMelo.PDF. Accessed 10 July 2023

  172. M. dos Santos, Simulador para Testes de Curvas de Termodiluição em Monitores de Débito Cardíaco. M.S. thesis, Dept Clin Eng UFCSPA, Porto Alegre, RS, Brazil. (2009)

  173. Y.-H. Jeong, Y.-K. Kim, Using Swan-Ganz Catheter in Cardiopulmonary Patients with More Accurate Cardiac Output Measurement Module Development. Proceedings KIICSC, pp. 473–476 (2010). https://koreascience.kr/article/CFKO201014258944026.pdf. Accessed 17 July 2023.

  174. L.A. Critchley, A. Lee, A.M.-H. Ho, A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth. Analg. 111(5), 1180–1192 (2010). https://doi.org/10.1213/ANE.0b013e3181f08a5b

    Article  Google Scholar 

  175. X.-X. Yang, L.A. Critchley, G.M. Joynt, Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig. Anesth. Analg. 112(1), 70–77 (2011). https://doi.org/10.1213/ANE.0b013e3181ff475e

    Article  Google Scholar 

  176. M. Ӧzbek, H.F. Ӧzel, N. Ekerbiçer et al., A physical model of the thermodilution method: influences of the variations of experimental setup on the accuracy of flow rate estimation. Biomed. Tech. 56, 59–64 (2011). https://doi.org/10.1515/BMT.2010.058

    Article  Google Scholar 

  177. M. Gawlikowski, T. Pustelny, Physical model of the pulmonary circulation designed for investigation on cardiac output measurement by means of the thermodilution method. Acta Physica Polonica 120(4), 798–802 (2011)

    Article  CAS  Google Scholar 

  178. M. Gawlikowski, T. Pustelny, B. Przywara-Chowaniec et al., Theoretical and model analysis of the unreability of cardiac output measurement by means of the thermodilution method. Bull. Pol. Acad. Sci. 59(4), 435–439 (2011). https://doi.org/10.2478/v10175-011-0054-6

    Article  Google Scholar 

  179. M. Gawlikowski, T. Pustelny, Investigations concerning the application of the cross-correlation method in cardiac output measurements. BioMed Eng. Online 11, 1–9 (2012). https://doi.org/10.1186/1475-925X-11-24

    Article  Google Scholar 

  180. B.-S. Lim, S.-H. Han, Y.-K. Kim, The Study of continuous cardiac output measurement module development of the cardiopulmonary function patient of using the Swan-Ganz Catheter. KIICE 17(4), 959–964 (2013)

    Google Scholar 

  181. M. Ložek, B. Nedvedova, J. Havlík, Mechanical model of a cardiovascular system: Determination of cardiac output by thermodilution method. International Conference on Applied Electronics, University of West Bohemia, pp. 177–179. (2013)

  182. B. Voss, Thermodilution Cardiac Output Computer Simulator, p. 12 (2014). http://www.frankshospitalworkshop.com/electronics/diy-cardiac_output_simulator.html. Accessed 10 July 2023

  183. J. Ye et al., Development of cardiac output monitoring system based on the thermodilution method. Chin. J. Med. Devices 38(5), 337–340 (2014)

    Google Scholar 

  184. M. Ložek, N. Havlíčková, J. Havlík, Adaptive mechanical model of cardiovascular system regulatory processes (2015). http://bmeg.fel.cvut.cz/wp-content/uploads/2015/03/Lozek-Adaptive_mechanical_model_of_Cardiovascular_system.pdf. Accessed 10 July 2023

  185. I. Kirkeby-Garstad, H. Trønnes, R. Stenseth et al., The precision of pulmonary artery catheter bolus thermodilution cardiac output measurement varies with the clinical situation. J. Cardiothorac. Vasc. Anesth. 29(4), 881–888 (2015). https://doi.org/10.1053/j.jvca.2014.12.016

    Article  Google Scholar 

  186. S.C. McKenzie, K. Dunster, W. Chan et al., Reliability of thermodilution derived cardiac output with different operator characteristics. J. Clin. Monit. Comput. (2017). https://doi.org/10.1007/s10877-017-0010-6

    Article  Google Scholar 

  187. M.D.B. de Melo, G.M. Botelho, V.F. Moreira et al., Characterization of the temporal response of the temperature sensor of Swan-Ganz catheter. IJDR 11(3), 45076–45086 (2021)

    Google Scholar 

  188. A. Johnson, G. Cupp, N. Armour et al., An inexpensive cardiovascular flow simulator for cardiac catheterization procedure using a pulmonary artery catheter. Front Med Technol. 3, 764007 (2021). https://doi.org/10.3389/fmedt.2021.764007/full

    Article  Google Scholar 

  189. D. Barvík, J. Kubíček, N. Malinova, et al, Analysis and Measurement of Cardiac Output Based on Pulmonary Artery Thermodilution in Laboratory Conditions. in 8th European Medical and Biological Engineering Conference. EMBEC 2020, IFMBE Proceedings, vol. 80, ed. T. Jarm, A. Cvetkoska, S. Mahnič-Kalamiza, D. Miklavcic (Springer, Cham, 2021), pp. 73–83. https://doi.org/10.1007/978-3-030-64610-3_10

  190. Q. Guo, X. Wu, Measuring cardiac output through thermodilution based on machine learning. J. Mech. Med. Biol. 21(5), 2140003 (2021). https://doi.org/10.1142/S0219519421400030

    Article  Google Scholar 

  191. L. Fresiello, K. Muthiah, K. Goetschalckx et al., Initial clinical validation of a hybrid in silico—in vitro cardiorespiratory simulator for comprehensive testing of mechanical circulatory support systems. Front. Physiol. 13, 967449 (2022). https://doi.org/10.3389/fphys.2022.967449/full

    Article  Google Scholar 

  192. E.J. Stanger, D.C. Berger, H. Jenni et al., Behaviour and stability of thermodilution signals in a closed extracorporeal circuit: a bench study. J. Clin. Monit. Comput. 37, 1095–1102 (2023)

    Article  Google Scholar 

  193. H.J. Goldsmid, The Physics of Thermoelectric Energy Conversion. Morgan & Claypool Publishers, p. 104 (2017). https://iopscience.iop.org/book/mono/978-1-6817-4641-8.pdf. Accessed 15 July 2023

  194. J. Smoot, Important Factors for Improved Peltier Module Reliability. In: Digi-Key Electronics (2020). https://www.digikey.com.br/pt/articles/important-factors-for-improved-peltier-module-reliability. Accessed 2 July 2023

  195. R. Singh, Advances in the applications of thermoelectric materials, in Thermoelectricity and Advanced Thermoelectric Materials. ed. by R. Kumar, R. Singh (Elsevier, Amsterdam, 2021), pp.312–336. https://doi.org/10.1016/C2019-0-01167-3

    Chapter  Google Scholar 

  196. S.H. Zaferani, M.W. Sams, R. Ghomashchi et al., Thermoelectric coolers as thermal management systems for medical applications: design, optimization, and advancement. Elsevier Nano Energy 90, 106572 (2021). https://doi.org/10.1016/j.nanoen.2021.106572

    Article  CAS  Google Scholar 

  197. B. Hu, X.-L. Shi, J. Zou et al., Thermoelectrics for medical applications: progress, challenges, and perspectives. CEJ 437(2), 135268 (2022). https://doi.org/10.1016/j.cej.2022.135268

    Article  CAS  Google Scholar 

  198. H. Andersson, V. Mattsson, A. Senek, Implementation of PID control using Arduino microcontrollers for glucose measurements and micro incubator applications. Uppsala Universitet, p. 22 (2015). https://www.diva-portal.org/smash/get/diva2:822215/FULLTEXT01.pdf. Accessed 28 June 2023

  199. K.T. Zar, N.P. Aung, N. Htway, Microcontroller control thermoelectric heating and cooling system using TEC1-12706. IJTSRD 4(4), 1706–1710 (2020)

    Google Scholar 

  200. M.-W. Tian, F. Aldawi, A.E. Anqi et al., Cost-effective and performance analysis of thermoelectricity as a building cooling system: experimental case study based on a single TEC-12706 commercial module. Case Stud. Therm. Eng. 27, 101366 (2021). https://doi.org/10.1016/j.csite.2021.101366

    Article  Google Scholar 

  201. M.K.R. Alam, H. Fitriawan, F.X.A. Setyawan et al., Design of a cooling and heating tool using thermoelectric peltier based on Arduino Uno. Jurnal Teknik Elektro 13(1), 41–47 (2021)

    Google Scholar 

  202. D. Ponikvar, Experiments on temperature regulation using a Peltier element and PID technique. Eur. J. Phys. 43, 035809 (2022). https://doi.org/10.1088/1361-6404/ac5b1f/pdf

    Article  Google Scholar 

  203. A. Kherkhar, Y. Chiba, A. Tlemçani et al., Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach. CSITE 36, 102249 (2022)

    Google Scholar 

  204. P.L.K. Rao, The controller for the temperature chamber with Peltier cell. SVOČ 2023, p. 9 (2023). http://svoc.tul.cz/Reg/mechatronika/Pavan_FM_NMSP.pdf. Accessed 10 July 2023

  205. Y. Liu, S. Yang, B. Guo et al., Numerical analysis and design of thermal management system for lithium ion battery pack using thermoelectric coolers. Adv. Mech. Eng. 2014, 852712 (2014). https://doi.org/10.1155/2014/852712

    Article  Google Scholar 

  206. Hebei IT. Thermoelectric Cooler TEC1-12706 (2006). http://www.hebeiltd.com.cn/peltier.datasheet/TEC1-12706.pdf. Accessed 6 July 2023

  207. Infineon Technologies. IR2110 500V high-side and low-gate driver IC with shutdown, p. 17 (2019). https://www.infineon.com/cms/en/product/power/gate-driver-ics/ir2110/. Accessed 10 July 2023

  208. Infineon Technologies. IRLZ24N 55V Single N-Channel Power MOSFET in a TO-220 package. PD 94998, p. 10 (2021). https://www.infineon.com/cms/en/product/power/mosfet/n-channel/irlz24n/. Accessed 10 July 2023

  209. R. Willem, H-Bridge Microchip PIC Microcontroller PWM Motor Controller (2009–2023). http://www.ermicro.com/blog/?p=706. Accessed 10 July 2023

  210. A. Ostadfar, Biofluid Mechanics: Principles and Applications (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/C2014-0-01583-3

    Book  Google Scholar 

  211. Y. Mendelson, Biomedical Sensors. Chapter 10. in Introduction to Biomedical Engineering, 3rd edn. (Elsevier, Amsterdam, 2012), pp. 609–666. https://doi.org/10.1016/B978-0-12-374979-6.00010-1

  212. A.Y.K. Chan, Biomedical Device Technology: Principles and Design, 3rd edn. (Springfiled, Charles C Thomas Pub Ltd, 2023), p.912

    Google Scholar 

  213. Dongguan Aolittel Electronics. Radial Leaded NTC 10k Thermistor Temperature Sensor MF51 (2021). https://ntc-sensors.com/product/en/Product-20211006-094839.html. Accessed 10 July 2023

  214. Amphenol Sensors. Thermometrics Temperature Sensors in Catheter Applications, p. 2 (2021). https://www.amphenol-sensors.com/hubfs/AAS-930-292A-Thermometrics-Temp-Catheters-120821-web.pdf. Accessed 4 July 2023

  215. Amphenol Corporation. Glass-Encapsulated Chip (GC) Thermistor, p. 1 (2018). https://f.hubspotusercontent40.net/hubfs/9035299/Documents/AAS-930-211A-Thermometrics-GC-Thermistor-062618-web.pdf. Accessed 4 July 2023

  216. Amphenol Sensors. “AB” Thermistor for Healthcare, p. 1 (2015). https://media.digikey.com/pdf/Data%20Sheets/Thermometrics%20Global%20Business%20PDFs/AB-Thermistors.pdf. Accessed 4 July 2023

  217. Amphenol Sensors. Type GC11 GC14, GC16 Thermometrics Glass Encapsulated NTC Chip Thermistor, p. 4 (2014). https://f.hubspotusercontent40.net/hubfs/9035299/Documents/AAS-920-584A-Thermometrics-Type-GC11-14-16-032114-web.pdf. Accessed 4 July 2023

  218. TE Sensor Solution. Glass Bead Fast Time Response Probe, p. 4 (2015). https://www.te.com/usa-en/product-GAG22K7MCD419.html. Accessed 4 July 2023

  219. Semitec Global. Medical Catalog, p. 1 (2022). https://www.semitec-global.com/uploads/2022/01/Medical.pdf. Accessed 4 July 2023

  220. Semitec Global. Fμ Thermistor, p. 1 (2017). https://www.semitec-global.com/uploads/2022/01/P8-F-micro-Thermistor.pdf. Accessed 4 July 2023

  221. Sensors Scientific Inc. Small Bead Thermistors, p. 2 (2018). https://irp-cdn.multiscreensite.com/e8db50c6/files/uploaded/GlassBead_NTC-0918.pdf. Accessed 10 July 2023

  222. SourceCom Technology. Thermodilution Swan-Ganz Catheter, p. 7 (2015). http://www.sourcecomtech.com/wp-content/uploads/2015/07/Medical-Catheters-New.pdf. Accessed 10 July 2023

  223. W. Bolton, Instrumentation and Control Systems, 3rd ed. Newnes, p. 392. (2021). https://doi.org/10.1016/C2020-0-00286-0

  224. R. Teja, Wheatstone Bridge: Working, Examples, Applications (2021). https://www.electronicshub.org/wheatstone-bridge/. Accessed 10 July 2023

  225. Texas Instruments. LMx58-N Low-Power, Dual-Operational Amplifiers, p. 41 (2023). https://www.ti.com/lit/ds/symlink/lm158-n.pdf. Accessed 5 July 2023

  226. Texas Instruments. LM340, LM340A and LM7805 Family Wide VIN 1.5-A Fixed Voltage Regulators datasheet (Rev. L), p. 38 (2016). https://www.ti.com/product/LM7800. Accessed 7 July 2023

  227. Microchip Technology. PIC16F631/677/685/687/689/690 DataSheet, p. 258 (2006). https://ww1.microchip.com/downloads/en/DeviceDoc/41262a.pdf. Accessed 10 July 2023

  228. Ward, H.: C Programming for the PIC Microcontroller: Demystify Coding with Embedded Programming. Apress, p. 271. ISBN: 978-1-4842-5525-4. (2020). https://doi.org/10.1007/978-1-4842-5525-4

  229. M. Predko, Programming and Customizing the PIC Microcontroller. McGraw-Hill, 3rd edn., p. 1293. ISBN-13: 978-0071472876 (2008). https://www.quillby.nl/vindigo/phocadownload/userupload/Prog.&Cust.PIC.pdf. Accessed 11 July 2023

  230. H. Parchizadeh, B. Vukanovic, PIC Projects: A Practical Approach (Wiley, New York, 2009), p. 224. ISBN: 978-0-470-69461-9

  231. D.W. Smith, PIC Projects and Applications using C. Elsevier Newnes 2013, p. 183. (2013). https://doi.org/10.1016/C2013-0-00524-5

  232. C.L. Izidoro, Desenvolvimento de uma bancada didática para estudos dos efeitos termoelétricos aplicados na engenharia, p. 140 (2015). https://lume.ufrgs.br/handle/10183/130128. Accessed 15 July 2023

  233. Microchip Developer Help. Analog-to-Digital Converter (2021). https://microchipdeveloper.com/8bit:adc. Accessed 10 July 2023

  234. T. Steffes, M. Smith, M. Brehob, EABLE PCB Introduction. Univ of Michigan, p. 19 (2019). https://www.eecs.umich.edu/courses/eecs473/Labs/EAGLE_PCB_Introduction.pdf. Accessed 10 July 2023

  235. C. Yang, EAGLE CAD Tutorial. ECE 445, Univ of Illinois, p. 20 (2016). https://courses.engr.illinois.edu/ece445/documents/EaglecadTutorial.pdf. Accessed 10 July 2023

  236. F. Li, PCB Design with Eagle. ECE, Univ of Idaho, p. 64 (2014). https://www.webpages.uidaho.edu/mindworks/Capstone%20Design/Presentations/FLi%20-%20PCB%20Design%20with%20EAGLE.PDF. Accessed 10 July 2023

  237. CadSoft Computer GmbH. EAGLE Easily Applicable Graphical Layout Editor. Tutorial v.6, 1 ed, p. 68 (2011). https://www.egr.msu.edu/eceshop/pcb/V6_tutorial_en.pdf. Accessed 10 July 2023

  238. Texas Instruments. MAX232x Dual EIA-232 Drivers/Receivers, p. 28 (2014–2023). https://www.ti.com/lit/ds/symlink/max232.pdf. Accessed 10 July 2023

  239. M. Kapoor, M. Stone, Cardiac output and intravascular volume in Monitoring in Anesthesia and Perioperative Care (Cambridge University, Cambridge, 2011), pp. 79–94. https://doi.org/10.1017/CBO9780511974083.010

  240. B.F. Geerts, L.P. Aarts, J.R. Jansen, Methods in pharmacology: measurement of cardiac output. Br. J. Clin. Pharmacol. 71(3), 316–330 (2010). https://doi.org/10.1111/j.1365-2125.2010.03798.x

    Article  Google Scholar 

  241. S.G. Sakka, D.A. Reuter, A. Perel, The transpulmonary thermodilution technique. J. Clin. Monit. Comput. 26, 347–353 (2012). https://doi.org/10.1007/s10877-012-9378-5

    Article  Google Scholar 

  242. C. Chamos, L. Vele, M. Hamilton et al., Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization. Med. Perioper. (2013). https://doi.org/10.1186/2047-0525-2-19

    Article  Google Scholar 

  243. Unisinos. http://www.unisinos.br/global/en/. Accessed 10 July 2023

  244. V. Hillmann, An Introduction to C++ Builder 2010, p. 106 (2009). https://www.embarcadero.com/images/dm/technical-papers/introduction-to-cppbuilder-whitepaper.pdf. Accessed 11 June 2023

  245. S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++ 11 and C++ 14, 1st edn. (O’Reilly Media, 2014), p. 451

  246. B. Stroustrup, The C++ Programming Language, 4th edn (Addison-Wesley, Upper Saddle River, 2021), p. 1368. https://www.stroustrup.com/4th.html. Accessed 18 July 2023

  247. Edwards Lifesciences Corporation. Swan-Ganz Catheter Computation Constants. PP-US-2259 v3.0, p. 2 (2023). https://education.edwards.com/computation-constants/94554#swan-ganz. Accessed 11 July 2023

  248. J. Balakrishnan (2017) Approximating area under curves and Riemann sums. Boston University, Depart. Math & Statistics. http://math.bu.edu/people/jbala/teaching/20171116.pdf. Accessed 11 July 2023

  249. Santa Casa de Misericórdia of Porto Alegre. International website. https://www.santacasa.org.br/pagina/international Accessed Jul 2023

  250. R. Boylestad, L. Nashelsky, Electronic Devices and Circuit Theory (Pearson Education, 2021), p. 927. ISBN 978-0-13-262226-4

  251. YSI Incorporated. Instructions for YSI Series 400 Temperature Probes (2012). https://neurophysics.ucsd.edu/Manuals/YSI/YSI%20Series%20400%20Temperature%20Probe.pdf. Accessed 20 Sept 2023

  252. Dixtal. Manual de Operação—Monitor DX 2010. Capítulo sobre débito cardíaco. Revisão (2007)

  253. W. Rutala, et al., Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control and Prevention, p. 163 (2008). https://www.cdc.gov/infectioncontrol/guidelines/disinfection/. Accessed 11 July 2023

  254. B. Johnson, M. Adi, M.G. Licina, et al., Chapter 3—Cardiac Physiology. in: Essentials of Cardiac Anesthesia, ed. J. Kaplan (Elsevier, Amsterdam, 2009), pp.53–66. https://doi.org/10.1016/B978-141603786-6.10003-8

  255. J. King, D.R. Lowery, Physiology, Cardiac Output (2022). https://www.ncbi.nlm.nih.gov/books/NBK470455/. Accessed 11 July 2023

  256. Clean Medical. DX2023 Monitor de Sinais Vitais—Manual de Operação, p. 54 (2019). http://cleanmedical.com.br/wp-content/uploads/2019/12/DIXTAL-2023.pdf. Accessed 11 July 2023

  257. Strategic Market Research. Hemodynamic Monitoring Systems Market Size, Report 2030 (2022). https://www.strategicmarketresearch.com/market-report/hemodynamic-monitoring-market. Accessed 11 July 2023

  258. J.J. Darrow, J. Avorn, A.S. Kesselheim, FDA regulation and approval of medical devices: 1976–2020. JAMA 326(5), 420–432 (2021). https://doi.org/10.1001/jama.2021.11171

    Article  Google Scholar 

  259. E. Mallis, An Introduction to FDA’s Regulation of Medical Devices. US Food and Drug Administration (2019). https://www.fda.gov/media/123602/download. Accessed 17 July 2023

  260. M.M. Brigmon, R.L. Brigmon, Infectious diseases impact on biomedical devices and materials. Biomed. Mater. Dev. (2022). https://doi.org/10.1007/s44174-022-00035-y

    Article  Google Scholar 

  261. R. Narayan (ed.), in Biomedical Materials (Springer, Cham, 2021), p. 728. https://doi.org/10.1007/978-3-030-49206-9

  262. Applied Thermoelectric Solutions. Listing of Thermoelectric Companies, Manufacturers, Suppliers—TEG and Cooling (2023). https://thermoelectricsolutions.com/list-of-thermoelectric-peltier-manufactures-companies-suppliers/. Accessed 17 July 2023

  263. Advanced Thermal Solutions Inc. How to Select a Thermoelectric Cooler, p. 3 (2014). https://www.qats.com/Download/Qpedia_May07_TEC_Selection5.ashx. Accessed 17 July 2023

  264. Crystal Ltd. Thermoelectric Modules Catalogue, p. 16 (2020). https://crystalltherm.com/images/Katalogi/Crystal_catalogue_TEM.pdf. Accessed 17 July 2023

  265. CUI Devices Inc. Peltier Application Note, p. 9 (2019). https://www.cuidevices.com/catalog/resource/peltier-app-note.pdf. Accessed 11 June 2023

  266. CUI Devices Inc. Peltier Devices (2023). https://www.cuidevices.com/catalog/thermal-management/peltier-devices. Accessed 17 July 2023

  267. European Thermodynamics Ltd. Thermoelectric Modules—Thermoelectric Cooler Modules (2020). https://www.europeanthermodynamics.com/products/thermoelectric-modules/peltier-cooler. Accessed 17 June 2023

  268. Ferrotec Corporation. 9.0 Thermoelectric Module Selection (2023). https://thermal.ferrotec.com/technology/thermoelectric-reference-guide/thermalref09/. Accessed 17 Jul, 2023

  269. Hebeit IT Shanghai. Peltier Thermoelectric Cooling Modules, p. 3 (2014). https://peltiermodules.com/peltier.datasheet/Peltier_Modules.pdf. Accessed 17 June 2023

  270. Laird Thermal Systems Inc. Thermoelectric Coolers Catalog, p. 8 (2022). https://lairdthermal.com/sites/default/files/ckfinder/files/resources/Catalogs/Thermoelectric-Modules/Thermoelectric-Coolers-Catalog-011822.pdf. Accessed 17 June 2023

  271. TEC Microsystems GmbH. Thermoelectric Coolers Frequently Asked Questions, p. 91 (2018). https://www.tec-microsystems.com/Download/Docs/TEC_FAQ_TCM.pdf. Accessed 17 June 2023

  272. TEC Microsystems GmbH. 1MA10 Series Aluminum TEC Intro, p. 9 (2020). https://www.tec-microsystems.com/Download/Docs/1MA10_Series_Aluminium_TECs_Intro.pdf. Accessed 11 Aug 2023

  273. Meerstetter Engineering. TEC/Peltier Element Design Guide (2023). https://www.meerstetter.ch/customer-center/compendium/32-tec-peltier-element-design-guide. Accessed 11 July 2023

  274. A. Pressman, Switching Power Supply Design, 2nd edn. (McGraw Hill, New York, 1997), p.682

    Google Scholar 

  275. P. Horowitz, W. Hill, The Art of Electronics, 3rd edn. (Cambridge University Press, Cambridge, 2015), p.1220

    Google Scholar 

  276. P. Scherz, S. Monk, Practical Electronics for Inventors, 4th edn. (McGraw Hill, New York, 2016), p.1056

    Google Scholar 

  277. R.W. Erickson, D. Maksimović, Fundamentals of Power Electronics, 3rd edn. (Springer, New York, 2020), p.1103

    Book  Google Scholar 

  278. Ferrotec Corporation. Thermoelectric Technical Reference—7.0 Power Supply Requirements (2023). https://thermal.ferrotec.com/technology/thermoelectric-reference-guide/thermalref07/. Accessed 6 Sept 2023

  279. X. Guo, M.A. Khalid, I. Domingos et al., Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security. Nat. Electron. 4, 615–624 (2021). https://doi.org/10.1038/s41928-021-00612-x

    Article  CAS  Google Scholar 

  280. J.W.T.M. de Kok et al., A guide to sharing open healthcare data under the General Data Protection Regulation. Sci. Data 10, 404 (2023). https://doi.org/10.1038/s41597-023-02256-2

    Article  Google Scholar 

  281. World Health Organization. The protection of personal data in health information systems—principles and processes for public health, p. 35 (2021). https://apps.who.int/iris/bitstream/handle/10665/341374/WHO-EURO-2021-1994-41749-57154-eng.pdf?sequence=1&isAllowed=y. Accessed 11 July 2023

  282. Information Commissioner’s Office. Guide to the General Data Protection Regulation (GDPR), p. 295 (2018). https://ico.org.uk/media/for-organisations/guide-to-the-general-data-protection-regulation-gdpr-1-0.pdf. Accessed 18 July 2023

  283. W. Zayat, O. Senvar, Framework study for Agile software development via Scrum and Kanban. Int. J. Innov. Technol. Manag. 17(4), 2030002 (2020). https://doi.org/10.1142/S0219877020300025

    Article  Google Scholar 

  284. C. Hofmann, S. Lauber, B. Haefner, G. Lanza, Development of an agile software development method based on Kanban for distributed part-time teams and an introduction framework. Procedia Manuf. 23, 45–50 (2018). https://doi.org/10.1016/j.promfg.2018.03.159

    Article  Google Scholar 

  285. S. Al-Saqqa, S. Sawalha, H. AbdelNabi, Agile software development: methodologies and trends. IJIM 14(11), 246–270 (2020). https://doi.org/10.3991/ijim.v14i11.13269

    Article  Google Scholar 

  286. Alpha Medical Instruments LLC. Thermodilution Catheter—Series 400 (2015). http://www.alphamedicalinstruments.com/pdf/Thermodilution_Catheter.pdf. Accessed 11 July 2023

  287. Alpha Medical Instruments LLC. Thermodilution Infusion Catheter—Series 500, p. 2 (2015). http://www.alphamedicalinstruments.com/pdf/Thermodilution_Infusion_Catheter.pdf. Accessed 11 July 2023

  288. Bioptimal International PTE. Instructions for use of thermodilution catheters and kits, p. 2 (2020). https://www.bioptimalg.com/Files/TD%E8%8B%B1%E6%96%87-51-000014-00_J2_200430.pdf. Accessed 10 July 2023

  289. Bioptimal International PTE. Thermodilution Catheter—Pulmonary Artery Monitoring Catheter and Biotray, p. 2 (2021). https://www.bioptimalg.com/Files/2.%20TD-%20PA.pdf. Accessed 10 July 2023

  290. Biosensors International. SafetyWedge Thermodilution Catheter (2012). https://biosensors.com/intl/sites/default/files/pdfs/products_technology/safety_wedge.pdf. Accessed 11 July 2023

  291. B. Braun SE. Right Heart Catheter (2023). https://www.bbraun.com/en/products/b/right-heart-catheter.html. Accessed 11 July 2023

  292. B. Braun SE. Hemodynamics Brochure, p. 48 (2017). https://www.bbraun-vetcare.es/content/dam/b-braun/es/microsite/informacion-de-producto/anestesia-y-analgesia/6050166%20Hemodynamics.pdf. Accessed 11 July 2023

  293. DeRoyal Industries. Thermodilution catheters (2023). https://www.deroyal.com/products/search-catalog-item/catalog-item-preview/ac-cathlab-thermodilutecath. Accessed 10 July 2023

  294. Edwards Lifesciences Corporation. Advanced Hemodynamic Monitoring Swan-Ganz Pulmonary Artery Catheters. Brochure PP-US-3089 v2. https://education.edwards.com/swan-ganztm-poster/258441#swan-ganz# (2018). Accessed 11 July 2023.

  295. Edwards Lifesciences Corporation. Critical Care Product Catalog. PP-US-1728 v5.0, p. 55 (2023). https://education.edwards.com/critical-care-product-catalog/653191#. Accessed 10 July 2023

  296. ICU Medical Incorporated. Pulmonary Artery Catheters—With No Natural Rubber Latex Components. M1-1244 Rev. 05, p. 4 (2021). https://www.icumed.com/media/14797/m1-1244-pa-cath-latex-free-rev-05_ada_web.pdf. Accessed 11 July 2023

  297. intra special catheters GmbH. Products, p. 30 (2021). https://www.intra-online.de/neu/pdf/2/2021_intra.pdf. Accessed 11 July 2023

  298. KFF S.A. Thermodilution Catheter. 2 p. https://kffmed.com/wp-content/uploads/2018/04/Binder1.pdf (2021). Accessed 15 Aug 2023.

  299. Merit Medical Systems. Flow-directed thermodilution catheter: instruction for use, p. 88 (2022). https://www.merit.com/wp-content/uploads/2022/09/51-000014-05_REV-A_.indd-TD.pdf. Accessed 11 July 2023

  300. Merit Medical Systems. Merit Pulmonary Artery and Thermodilution Catheters, p. 2 (2022). https://cloud.merit.com/catalog/Brochures/406342001.pdf. Accessed 11 July 2023

  301. Nipro Canada. Thermodilution catheter, p. 2 (2019). https://nipro.ca/wp-content/uploads/2019/10/CC_ThermoDilutionCath_Rev4.pdf. Accessed 10 July 2023

  302. Teleflex Inc. Arrow® Right Heart Catheters and Vascular Access Sheaths: Diagnostic Monitoring and Therapeutic Catheter Solutions, p. 9 (2021). https://www.teleflex.com/usa/en/product-areas/interventional/cardiac-diagnostics/arrow-thermodilution-catheters/CC_RH_Right-Heart-Product-Brochure_BR_MC-000166_Rev%203_final.pdf. Accessed 17 July 2023

  303. Zeon Corporation. Thermodilution catheter, p. 2 (2019). https://www.zeonmedical.co.jp/product/circulation/pdf/TDC_TPC_W_1905_ver02_out.pdf. Accessed 16 Aug 2023

  304. J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327(8476), 307–310 (1986). https://doi.org/10.1016/S0140-6736(86)90837-8

    Article  Google Scholar 

  305. D.G. Altman, J.M. Bland, Measurement in medicine: the analysis of method comparison studies. Statistician 32(3), 307–317 (1983). https://doi.org/10.2307/2987937

    Article  Google Scholar 

  306. D. Giavarina, Understanding Bland Altman analysis. Biochemia Medica 25(2), 141–151 (2015). https://doi.org/10.11613/BM.2015.015

    Article  Google Scholar 

  307. C.A. Willard, An Introduction to Basic Statistical Concepts and Analysis, 2nd edn. (Routledge, London, 2020), p.364. https://doi.org/10.4324/9780429261039

    Book  Google Scholar 

  308. K.F. Bachmann, L. Zwicker, K. Nettelbeck, D. Casoni, P.P. Heinisch, H. Jenni, M. Haenggi, D. Berger, Assessment of right heart function during extracorporeal therapy by modified thermodilution in a porcine model. Anesthesiology 133(4), 879–891 (2020). https://doi.org/10.1097/ALN.0000000000003443

    Article  CAS  Google Scholar 

  309. N. Kiefer, C.K. Hofer, G. Marx, M. Geisen, R. Giraud, N. Siegenthaler, A. Hoeft, K. Bendjelid, S. Rex, Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit. Care 16(3), R98 (2012). https://doi.org/10.1186/cc11366

    Article  Google Scholar 

  310. S.T. Heerwagen, L. Lönn, T.V. Schroeder et al., Catheter-based flow measurements in hemodialysis fistulas—bench testing and clinical performance. J. Vasc. Access 13(1), 45–50 (2012). https://doi.org/10.5301/JVA.2011.8443

    Article  Google Scholar 

  311. D. Furlong, D.L. Carroll, C. Finn et al., Comparison of temporal to pulmonary artery temperature in febrile patients. Dimens. Crit. Care Nurs. 34(1), 47–52 (2015). https://doi.org/10.1097/DCC.0000000000000090

    Article  Google Scholar 

  312. F. Cipulli, M. Battistin, E. Carlesso et al., Quantification of recirculation during veno-venous extracorporeal membrane oxygenation: in vitro evaluation of a thermodilution technique. ASAIO J. 68(2), 184–189 (2022)

    Article  CAS  Google Scholar 

  313. I. Gratz, M. Baruch, A. Awad et al., A new continuous noninvasive finger cuff device (Vitalstream) for cardiac output that communicates wirelessly via bluetooth or Wi-Fi. BMC Anesthesiol. 23(1), 180 (2023). https://doi.org/10.1186/s12871-023-02114-z

    Article  Google Scholar 

  314. A. Dvir, N. Goldstein, A. Rapaport et al., Comparing cardiac output measurements using a wearable, wireless, noninvasive photoplethysmography-based device to pulse contour cardiac output in the general ICU: a brief report. Crit. Care Explor. 4(2), e0624 (2022)

    Article  Google Scholar 

  315. S.D. Gregory, H. Cooney, S. Diab et al., In vitro evaluation of an ultrasonic cardiac output monitoring (USCOM) device. J. Clin. Monit. Comput. 30(1), 69–75 (2016). https://doi.org/10.1007/s10877-015-9685-8

    Article  Google Scholar 

  316. Y. Launey, R. Larmet, N. Nesseler, Y. Malledant, C. Palpacuer, P. Seguin, The accuracy of temperature measurements provided by the Edwards lifesciences pulmonary artery catheter. Anesth. Analg. 122(5), 1480–1483 (2016). https://doi.org/10.1213/ANE.0000000000001242

    Article  Google Scholar 

  317. L. Mitrev, N. van Helmond, G. Kaddissi et al., A pilot study comparing aortic valve area estimates derived from Fick cardiac output with estimates based on Cheetah-NICOM cardiac output. Sci. Rep. 10, 7852 (2020). https://doi.org/10.1038/s41598-020-64753-3

    Article  CAS  Google Scholar 

  318. M. Russ, E. Steiner, W. Boemke et al., Extracorporeal membrane oxygenation blood flow and blood recirculation compromise thermodilution-based measurements of cardiac output. ASAIO J. 68(5), 721–729 (2022). https://doi.org/10.1097/MAT.0000000000001592

    Article  CAS  Google Scholar 

  319. A.J. Milam, F. Ghoddoussi, J. Lucaj, S. Narreddy, N. Kumar, V. Reddy, J. Hakim, S.H. Krishnan, Comparing the mutual interchangeability of ECOM, FloTrac/Vigileo, 3D-TEE, and ITD-PAC cardiac output measuring systems in coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 35(2), 514–529 (2021). https://doi.org/10.1053/j.jvca.2020.03.048

    Article  Google Scholar 

  320. F. Tettey, S.K. Parupelli, S. Desai, A review of biomedical devices: classification, regulatory guidelines, human factors, software as a medical device, and cybersecurity. Biomed. Mater. Dev. (2023). https://doi.org/10.1007/s44174-023-00113-9

    Article  Google Scholar 

  321. C.L. Sprung, L.A. Eidelman, The issue of a U.S. Food and Drug Administration moratorium on the use of the pulmonary artery catheter. New Horiz. 5(3), 277–280 (1997)

    CAS  Google Scholar 

  322. G.R. Bernard, G. Sopko, F. Cerra et al., Pulmonary artery catheterization and clinical outcomes. JAMA 283(19), 2568–2572 (2000). https://doi.org/10.1001/jama.283.19.2568

    Article  CAS  Google Scholar 

  323. R.M. Perkin, N. Anas, Pulmonary artery catheters. Pediatr. Crit. Care Med. 12(4 Suppl), S12–S20 (2011). https://doi.org/10.1097/PCC.0b013e318220f079

    Article  Google Scholar 

  324. K. Piermatteo, In: U.S. Food and Drug Administration. The 510(k) Program, p. 67 (2014). https://www.fda.gov/media/89869/download. Accessed 10 Aug 2023

  325. I. Abuhav, ISO 13485: 2016—A Complete Guide to Quality Management in the Medical Device Industry (CRC Press, Boca Raton, 2018), p.893

    Google Scholar 

  326. International Organization for Standardization. ISO 13485—Quality management for medical devices, p. 12. https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100377.pdf(2016). Accessed 11 July 2023

  327. U.S. Food and Drug Administration. 510(k) Clearances (2021). https://www.fda.gov/medical-devices/device-approvals-denials-and-clearances/510k-clearances. Accessed 10 Aug 2023

  328. U.S. Food and Drug Administration. Premarket Notification 510(k) (2022). https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k. Accessed 10 Aug 2023

  329. Center for Devices and Radiological Health. Electromagnetic Compability (EMC) of Medical Devices: Guidance for Industry and Food and Drug Administration Staff, p. 20 (2022). https://www.fda.gov/media/94758/download. Accessed 11 July 2023

  330. I. Juuso, Developing an ISO 13485-Certified Quality Management System: An Implementation Guide for the Medical-Device Industry (Routledge/Productivity Press, Taylor & Francis Group, London, 2022), p.371. https://doi.org/10.4324/9781003202868

    Book  Google Scholar 

  331. C.R. Paul, R.C. Scully, M.A. Steffka, Introduction to Electromagnetic Compatibility, 3rd edn. (Wiley, New York, 2022), p.848

    Google Scholar 

  332. J. Wong, R.K.Y. Tong, Medical Regulatory Affairs: An International Handbook for Medical Devices and Healthcare Products (3rd ed.). (Jenny Stanford Publishing, 2022), p. 806. https://doi.org/10.1201/9781003207696

  333. A.K. Sarata, FDA Regulation of Medical Devices. Congressional Research Service R47374, p. 45. Jan 4, 2023 (2023). https://crsreports.congress.gov/product/pdf/R/R47374. Accessed 12 Aug 2023

  334. T.J. Iberti, E.K. Daily, A.B. Leibowitz et al., Assessment of critical care nurses’ knowledge of the pulmonary artery catheter. The Pulmonary Artery Catheter Study Group. Crit. Care Med. 22(10), 1674–1678 (1994)

    Article  CAS  Google Scholar 

  335. A. Gnaegi, F. Feihl, C. Perret, Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit. Care Med. 25(2), 213–220 (1997)

    Article  CAS  Google Scholar 

  336. M.L. Good, Patient simulation for training basic and advanced clinical skills. Med. Educ. 37(Suppl 1), 14–21 (2003). https://doi.org/10.1046/j.1365-2923.37.s1.6.x

    Article  Google Scholar 

  337. A.B. Al-Elq, Simulation-based medical teaching and learning. J. Fam. Community Med. 17(1), 35–40 (2010). https://doi.org/10.4103/1319-1683.68787

    Article  Google Scholar 

  338. D.M. Harris, K. Ryan, C. Rabuck, Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves. Adv. Physiol. Educ. 36(3), 213–219 (2012). https://doi.org/10.1152/advan.00058.2012

    Article  Google Scholar 

  339. I. Motola, L.A. Devine, H.S. Chung et al., Simulation in healthcare education: a best evidence practical guide. AMEE Guide No. 82. Med. Teach. 35(10), e1511-1530 (2013). https://doi.org/10.3109/0142159X.2013.818632

    Article  Google Scholar 

  340. H.Y. So, P.P. Chen, G.K.C. Wong et al., Simulation in medical education. J. R. Coll. Physicians Edinb. 49(1), 52–57 (2019). https://doi.org/10.4997/jrcpe.2019.112

    Article  Google Scholar 

  341. L.J. Davidson, K.Y. Chow, A. Jivan et al., Improving cardiology fellow education of right heart catheterization using a simulation based curriculum. Catheter. Cardiov. Interv. 97(3), 503–508 (2021). https://doi.org/10.1002/ccd.29128

    Article  Google Scholar 

  342. M.H. Tukey, R.S. Wiener, The current state of fellowship training in pulmonary artery catheter placement and data interpretation: a national survey of pulmonary and critical care fellowship program directors. J. Crit. Care 28(5), 857–861 (2013). https://doi.org/10.1016/j.jcrc.2013.06.003

    Article  Google Scholar 

  343. D. Chaló, J. Marques, H. Mendes et al., Design of an interface for teaching cardiovascular physiology to anesthesia clinicians with a patient simulator connected to a minimally invasive cardiac output monitor (LiDCO rapid®). Adv. Simul. 5, 16 (2020). https://doi.org/10.1186/s41077-020-00134-0

    Article  Google Scholar 

  344. Clinical Gate. Hemodynamic Monitoring (2015). https://clinicalgate.com/hemodynamic-monitoring-3/. Accessed 10 July 2023

  345. Respiratory Update. Pulmonary Artery Catheter: Types, Uses, Contraindications (2023). http://www.respiratoryupdate.com/members/PA_Catheter_Types.cfm. Accessed 11 July 2023

  346. S. Sigh, S. Sharma, High-Output Cardiac Failure (2022). https://www.ncbi.nlm.nih.gov/books/NBK513337/. Accessed 11 July 2023.

Download references

Acknowledgements

The authors thank the ISCMPA for providing the medical equipment for prototype validation tests. The authors thank Unisinos University and Fundação Liberato for providing access to the laboratories necessary for developing and adjusting the hardware and software of this research. The authors thank J. Larsen, T. Adamson, M. Delgado, D. Bertolozi, and J. Neto for providing comments that brought improvements to the manuscript. Last but not least, the authors are grateful for the valuable help and guidance of Professor A. Lawisch since day one and the support of our families who were with us on this journey.

Author information

Authors and Affiliations

Authors

Contributions

CFTdA participated in the conceptualization; investigation; hardware and software design, writing of the original draft and reviewing and editing of the manuscript; data curation; methodology; data analysis and discussion; and final considerations. BTdA participated in the writing, reviewing, and editing of the manuscript; methodology reviewing; and data analysis reviewing.

Corresponding author

Correspondence to Caio Francisco Ternus de Abreu.

Ethics declarations

Competing interests

The authors declare no conflict and non-competing interests for developing this research.

Ethical Approval

The final tests of the prototype conducted in this research were approved by the Ethical Committee and Coordination of Biomedical Engineering Department of the ISCMPA. The authors followed all the guidelines, legislation, legal and ethical standards for use of the medical equipment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abreu, C.F.T., de Abreu, B.T. The Concept and Building of a Simulation Device to Check the Cardiac Output Measurement Through the Pulmonary Artery Catheter. Biomedical Materials & Devices (2023). https://doi.org/10.1007/s44174-023-00130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00130-8

Keywords

Navigation