Skip to main content
Log in

Characterization, Anti-lung Cancer Activity, and Cytotoxicity of Bio-synthesized Copper Nanoparticles by Thymus fedtschenkoi Leaf Extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Today propose diverse techniques to remedy cancer and nanotechnology is one of the most effective cancer treatments. In this study, we detail a simple and environmentally friendly approach for synthesizing copper nanoparticles (CuNPs) using Thymus fedtschenkoi leaves extract. Studies on the structure, morphological, optical, cytotoxic, and anti-lung cancer properties of the CuNPs were conducted. The XRD pattern shows that CuNPs have a highly crystalline nature and exhibit a cubic crystal system. In order to evaluate the shape and size of the produced NPs, FE-SEM and HR-TEM were employed. The findings of the current study indicated that CuNPs had a significant growth-inhibiting effect on the lung cancer cell lines: NCI-H661, NCI-H1975, NCI-H1573, and NCI-H1563. Furthermore, the cytotoxicity effect against Human umbilical vein endothelial cells (HUVEC) was not seen at concentrations as high as 1000 μg/mL for these NPs. CuNPs are expected to be employed as a medication to treat lung cancer in upcoming clinical trials after passing the in vivo tests.

Graphical Abstract

Thymus fedtschenkoi extract was employed to green synthesis of copper nanoparticles (CuNPs). CuNPs were characterized using FT-IR, TEM, XRD, SEM, DLS and UV/Vis. The anticancer, antioxidant and cytotoxicity activities of CuNPs were evaluated. The finding of biological activities showed that these CuNPs could be used as a drug to lung cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7.

Similar content being viewed by others

Data Availability

The data presented in this manuscript is new and has not been published elsewhere. This data includes figures (plots and images), and tables.

References

  1. M. G. Mokwena, et al. (2018). Photodiagn. Photodyn. Ther. 22, 147.

    Article  CAS  Google Scholar 

  2. F. Badrzadeh, et al. (2016). Artif. Cells Nanomed. Biotechnol. 44 (2), 618.

    Article  CAS  PubMed  Google Scholar 

  3. K. C. Sadanala, et al. (2014). Anticancer Res. 34 (9), 4657.

    CAS  PubMed  Google Scholar 

  4. J. Adizie, et al. (2019). Clin. Oncol. 31 (10), 688.

    Article  CAS  Google Scholar 

  5. M. Zhang, et al. (2021). Acta Biomater. 124, 327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J.-P. Pignon, et al., in. 2008, Centre for Reviews and Dissemination (UK).

  7. V. Malyla, et al. (2020). Fut. Med. Chem. 12 (7), 567.

    CAS  Google Scholar 

  8. A. T. Nkembo, et al. (2019). Curr. Cancer Drug Targets 19 (10), 838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. Ercetin, et al. (2019). Cancers 11 (9), 1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Sharma, et al. (2019). Chem. Biol. Interact. 309, 108720.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. C. Rolfo, et al. (2014). Cancer Treat. Rev. 40 (8), 990.

    Article  CAS  PubMed  Google Scholar 

  12. J. Klastersky and A. Awada (2012). Crit. Rev. Oncol. Hematol. 81 (1), 49–57.

    PubMed  Google Scholar 

  13. M. J. Bott, et al. (2015). Ann. Thorac. Surg. 99 (6), 1921.

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. A. Bunn Jr. (2004). J. Natl. Compr. Cancer Netw. 2, S31.

    Article  Google Scholar 

  15. B. Sun, et al. (2019). Artif. Cells Nanomed. Biotechnol. 47 (1), 4012.

    Article  PubMed  Google Scholar 

  16. S. Chakraborty and T. Rahman (2012). Ecancermedicalscience 6, ed16.

    PubMed  PubMed Central  Google Scholar 

  17. C. Kleinstreuer, Y. Feng, and E. Childress (2014). World J. Clin. Cases 2 (12), 742.

    Article  PubMed  PubMed Central  Google Scholar 

  18. M. S. Jabir, et al. (2021). Artif. Cells Nanomed. Biotechnol. 49 (1), 48.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  19. R. Mohammadian, M. M. Amini, and A. Shaabani (2020). Catal. Commun. 136, 105905.

    Article  CAS  Google Scholar 

  20. R. Mohammadian, et al. (2020). ChemistrySelect 5 (33), 10346.

    Article  CAS  Google Scholar 

  21. H. Jan, et al. (2020). RSC Adv. 10 (33), 19219.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Jan, et al., Oxid. Med. Cell. Longev. 2021 (2021)

  23. S. Haider, et al. (2016). Appl. Surf. Sci. 387, 1154.

    Article  ADS  CAS  Google Scholar 

  24. T. Kamal, S. B. Khan, and A. M. Asiri (2016). Cellulose 23 (3), 1911.

    Article  CAS  Google Scholar 

  25. S. Faisal, et al. (2022). ACS Omega 7 (5), 4071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Faisal, et al. (2021). Coatings 11 (7), 849.

    Article  MathSciNet  CAS  Google Scholar 

  27. M. Salavati-Niasari, F. Davar, and N. Mir (2008). Polyhedron 27 (17), 3514.

    Article  CAS  Google Scholar 

  28. A. Dehnoee, et al. (2023). Micro Nano Lett. 18 (1), e12153.

    Article  CAS  Google Scholar 

  29. Z. Heidari, et al. (2018). 3 Biotech 8, 1.

    Article  CAS  Google Scholar 

  30. T. Hussain, et al. (2022). J. Saudi Chem. Soc. 26 (4), 101486.

    Article  Google Scholar 

  31. P. Kubatka, et al. (2019). Int. J. Mol. Sci. 20 (7), 1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Xie, Y. Li, and W. Cheng (2022). J. Drug Deliv. Sci. Technol. 72, 103342.

    Article  CAS  Google Scholar 

  33. G. Rajagopal, et al. (2021). Heliyon 7 (6), e07360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. P. Ingle, N. Duran, and M. Rai (2014). Appl. Microbiol. Biotechnol. 98, 1001.

    Article  CAS  PubMed  Google Scholar 

  35. Q. Luo, et al. (2021). Redox Biol. 41, 101912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Delazar, et al. (2011). J. Essent. Oil Bear. Plants 14 (1), 23.

    Article  CAS  Google Scholar 

  37. H. Ghelichnia (2018).

  38. K. H. C. Başer, et al. (2002). Flavour Fragr. J. 17 (1), 41.

    Article  Google Scholar 

  39. A. Mohammadi-Liri, et al. (2022). Chem. Pap., 1.

  40. S. Bhavana, et al. (2022). Inorg. Nano-Met. Chem., 1

  41. P. Yugandhar, et al. (2017). Appl. Nanosci. 7, 417.

    Article  ADS  CAS  Google Scholar 

  42. J. Bai, et al. (2021). J. Exp. Nanosci. 16 (1), 397.

    Article  CAS  Google Scholar 

  43. K. D. Arunachalam, S. K. Annamalai, and S. Hari (2013). Int. J. Nanomed. 8, 1307.

    Article  Google Scholar 

  44. D. Ma, et al. (2020). Int. J. Biol. Macromol. 165, 767.

    Article  PubMed  Google Scholar 

  45. J. Wang, et al. (2021). Mater. Chem. Phys. 257, 123375.

    Article  CAS  Google Scholar 

  46. Z. Shi, et al. (2021). Arab. J. Chem. 14 (8), 103224.

    Article  CAS  Google Scholar 

  47. C. He, et al. (2021). J. Environ. Chem. Eng. 9 (6), 106393.

    Article  CAS  Google Scholar 

  48. G. Zhao, et al. (2021). Arch. Med. Sci.

  49. Y. Lu, et al. (2021). J. Market. Res. 12, 1832.

    ADS  CAS  Google Scholar 

  50. A. Ahmeda, A. Zangeneh, and M. M. Zangeneh (2020). Appl. Organomet. Chem. 34 (2), e5378.

    Article  CAS  Google Scholar 

  51. S. Hemmati, et al. (2020). Appl. Organomet. Chem. 34 (2), e5267.

    Article  CAS  Google Scholar 

  52. M. Raja, et al. (2008). Mater. Manuf. Process. 23 (8), 782.

    Article  CAS  Google Scholar 

  53. T. Wang, et al. (2014). Sci. Total Environ. 466, 210.

    Article  ADS  PubMed  Google Scholar 

  54. R. Hassanien, D. Z. Husein, and M. F. Al-Hakkani (2018). Heliyon 4 (12), e01077.

    Article  PubMed  PubMed Central  Google Scholar 

  55. O. C. Olatunde and D. C. Onwudiwe (2021). Front. Mater. 8, 687562.

    Article  Google Scholar 

  56. S. A. Aldahash, S. Siddiqui, and M. K. Uddin (2023). J. Nat. Fibers 20 (2), 2224976.

    Article  Google Scholar 

  57. I. M. Chung, et al. (2017). Exp. Ther. Med. 14 (1), 18.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Munin and F. Edwards-Lévy (2011). Pharmaceutics 3 (4), 793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. H. Murthy, et al. (2020). J. Nanomater. 2020, 1–12.

    Article  Google Scholar 

  60. Z. N. Kayani, et al. (2015). J. Electron. Mater. 44 (10), 3704.

    Article  ADS  CAS  Google Scholar 

  61. M. Rezzoug, et al. (2019). BMC Complement. Altern. Med. 19 (1), 1.

    Article  CAS  Google Scholar 

  62. R. Subbaiya, et al. (2014). Int. J. Curr. Microbiol. Appl. Sci 3 (1), 83.

    CAS  Google Scholar 

  63. H. J. Lee, J. Y. Song, and B. S. Kim (2013). J. Chem. Technol. Biotechnol. 88 (11), 1971.

    Article  CAS  Google Scholar 

  64. S. Sumathi, et al. (2013). Int. J. Pharmacol. Sci. Invent 2, 21–26.

    Google Scholar 

  65. M. Roberson, et al. (2014). Nano Life 4 (01), 1440003.

    Article  Google Scholar 

  66. U. Jinu, et al. (2017). Microb. Pathog. 105, 86.

    Article  CAS  PubMed  Google Scholar 

  67. J. Sahu, P. K. Patel, and B. Dubey (2012). Int. J. Pharm. Phytopharmacol. Res 1 (5), 313.

    CAS  Google Scholar 

  68. R. Mukhopadhyay, J. Kazi, and M. C. Debnath (2018). Biomed. Pharmacother. 97, 1373.

    Article  CAS  PubMed  Google Scholar 

  69. H. Liu, et al. (2021). J. Exp. Nanosci. 16 (1), 410.

    Article  CAS  Google Scholar 

  70. J. Gu, et al. (2023). Inorg. Chem. Commun. 150, 110442.

    Article  CAS  Google Scholar 

  71. J. Gu, A. Aidy, and S. Goorani (2022). J. Exp. Nanosci. 17 (1), 285.

    Article  CAS  Google Scholar 

  72. J. Chen. (2022). Authorea Preprints.

  73. R. Sankar, et al. (2014). Mater. Sci. Eng. C 44, 234.

    Article  CAS  Google Scholar 

  74. S. Harne, et al. (2012). Colloids Surf. B 95, 284.

    Article  CAS  Google Scholar 

  75. D. Rehana, et al. (2017). Biomed. Pharmacother. 89, 1067.

    Article  CAS  PubMed  Google Scholar 

  76. H. Raveesha and L. Pramila (2022). Indian J. Sci. Technol. 15 (22), 1075.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

AD: conceptualization, methodology, software, data curation, writing original draft preparation, visualization, investigation, interpretation of analysis data. RJK: supervision, writing-reviewing and editing. MMZ and AZ: biological evaluation. MRD: supervision.

Corresponding authors

Correspondence to Roozbeh Javad Kalbasi or Mohammad Mahdi Zangeneh.

Ethics declarations

Competing Interests

Authors declare no competing interests.

Ethical Approval

In this study, no human or animal studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 591 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehnoee, A., Javad Kalbasi, R., Zangeneh, M.M. et al. Characterization, Anti-lung Cancer Activity, and Cytotoxicity of Bio-synthesized Copper Nanoparticles by Thymus fedtschenkoi Leaf Extract. J Clust Sci 35, 863–874 (2024). https://doi.org/10.1007/s10876-023-02512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02512-w

Keywords

Navigation