Skip to main content
Log in

A New Hybrid Organic–Inorganic Salt: bis(3-Aminopyridinium)Tetrachlorocobaltate(II), Application in the Synthesis of Nanostructured Co3O4 for Hexavalent Chromium Removal

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Single crystals of bis(3-aminopyridinium)tetrachlorocobaltate(II) were successfully synthesized and structurally characterized using single crystal X-ray diffraction. This study shows that the structure is built on inorganic anionic and organic cationic subnetworks stabilized by Cl…Cl and antiparallel offset face to face π-π stacking interactions, respectively. The cohesion of the overall packing is ensured by N–H…Cl hydrogen bonds leading to a three dimensional network. Structural geometry optimization and gap energy determination were performed thanks to DFT calculation. Thermal decomposition of the title compound powder, at 450 °C in air atmosphere, leads to nanostructured Co3O4 as confirmed by X-ray powder diffraction. The obtained cobalt oxide was used as adsorbent for the removal of hexavalent chromium ions from aqueous solution. The effect of contact time was investigated and showed an unusual behavior consisting of the existence of two equilibrium plateaus at 11 mg.g−1 and 15 mg.g−1 which were attributed to surface heterogeneity, as elucidated by scanning electron microscopy analysis. As a consequence, the kinetic data were analyzed in steps and fitted using non linear pseudo-first order and non linear pseudo-second order models. A comparative study with other adsorbents demonstrated the potential of the synthesized Co3O4 via thermal decomposition of the title compound for hexavalent chromium ions removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Upreti and A. Ramanan (2006). Cryst. Growth Des. 6 (9), 2066–2071. https://doi.org/10.1021/cg0601610.

    Article  CAS  Google Scholar 

  2. C. B. Aakeröy and D. S. Leinen, Hydrogen-bond assisted assembly of organic and organic-inorganic solids,. Crystal Engineering: From Molecules and Crystals to Materials. Springer, Dordrecht, pp 89–106.

    Chapter  Google Scholar 

  3. J. Zhao, F. Chen, Y. Han, H. Chen, Z. Luo, H. Tian, Y. Zhao, A. Ma, and L. Zhu (2018). Molecules 23 (6), 1397–1410. https://doi.org/10.3390/molecules23061397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. L. Nisbet, Y. Wang, and K. R. Poeppelmeier (2020). Cryst. Growth Des. 21 (1), 552–562. https://doi.org/10.1021/acs.cgd.0c01355.

    Article  CAS  Google Scholar 

  5. D. J. Carnevale, C. P. Landee, M. M. Turnbull, M. Winn, and F. Xiao (2010). J. Coord. Chem. 63 (13), 2223–2238. https://doi.org/10.1080/00958972.2010.502230.

    Article  CAS  Google Scholar 

  6. J. M. Land, R. G. Baughman, and C. A. Hester (1997). Acta Cryst. https://doi.org/10.1107/S0108270197099435.

    Article  Google Scholar 

  7. S. Haddad, A. Vij, and R. D. Willett (2003). J. Chem. Crystallogr. 33 (4), 245–251. https://doi.org/10.1023/A:1023872925437.

    Article  CAS  Google Scholar 

  8. S. R. Jebas, T. Balasubramanian, and M. E. Light (2006). Acta Cryst. E62 (8), m1818–m1819. https://doi.org/10.1107/S1600536806026213.

    Article  CAS  Google Scholar 

  9. S. R. Jebas, A. Sinthiya, B. Ravindran Durai Nayagam, D. Schollmeyer, and S. A. C. Raj (2009). Acta Cryst. https://doi.org/10.1107/S1600536809013270.

    Article  Google Scholar 

  10. M. Mghandef and H. Boughzala (2015). Acta Cryst. E71 (5), 555–557. https://doi.org/10.1107/S2056989015007707.

    Article  CAS  Google Scholar 

  11. O. Ben Moussa, H. Chebbi, and M. F. Zid (2018). Acta Cryst. https://doi.org/10.1107/S2056989018003171.

    Article  Google Scholar 

  12. A. A. Alotaibi, C. Ayari, E. Bajuavfir, A. Ahmad, F. Al-Nahdi, A. M. Alswieleh, K. L. Alotaibi, J. Mi, C. Ben Nasr, and M. H. Mrad (2022). Opt. Spectrosc. Thermal Anal. Cryst. 12 (2), 140–157. https://doi.org/10.3390/cryst12020140.

    Article  CAS  Google Scholar 

  13. Y. L. Xu, J. Zhang, L. S. Chen, Y. Y. Zeng, J. R. Zhou, C. L. Ni, and W. X. Zheng (2020). J. Mol. Struct. 1222, 128902–128907. https://doi.org/10.1016/j.molstruc.2020.128902.

    Article  CAS  Google Scholar 

  14. A. Kaiba, M. H. Geesi, Y. Riadi, E. O. Ibnouf, T. A. Aljohani, and P. Guionneau (2021). J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122587.

    Article  Google Scholar 

  15. A. Timoumi, D. Dastan, B. Jamoussi, K. Essalah, O. Alsalmi, N. Bouguila, H. Abassi, R. Chakroun, Z. Shi, and Ş Ţălu (2022). Mol. 27 (19), 6151. https://doi.org/10.3390/molecules27196151.

    Article  CAS  Google Scholar 

  16. S. Hadaoui, Z. Ouerghi, S. Elleuch, and R. Kefi (2022). J Struct Mol. https://doi.org/10.1016/j.molstruc.2021.131441.

    Article  Google Scholar 

  17. Z. Abbasi, M. Salehi, A. Khaleghian, and M. Kubicki (2018). Appl. Organomet. Chem. 32 (11), e4542. https://doi.org/10.1002/aoc.4542.

    Article  CAS  Google Scholar 

  18. E. M. M. Ibrahim, L. H. Abdel-Rahman, A. M. Abu-Dief, A. Elshafaie, S. K. Hamdan, and A. M. Ahmed (2018). Mater. Res. Bull. 99, 103–108. https://doi.org/10.1016/j.materresbull.2017.11.002.

    Article  CAS  Google Scholar 

  19. B. Z. Momeni, F. Rahimi, and F. Rominger (2018). J. Inorg. Organomet. Polym. Mater. 28 (1), 235–250. https://doi.org/10.1007/s10904-017-0706-6.

    Article  CAS  Google Scholar 

  20. Z. Razmara and E. Sanchooli (2019). J. Inorg. Organomet. Polym. Mater. 29 (6), 2090–2102. https://doi.org/10.1007/s10904-019-01168-2.

    Article  CAS  Google Scholar 

  21. S. Meghdadi, M. Amirnasr, M. Zhiani, F. Jallili, M. Jari, and M. Kiani (2017). Electrocatalysis 8 (2), 122–131. https://doi.org/10.1007/s12678-016-0345-7.

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick (2008). Acta Cryst. A 64, 112–122.

    Article  CAS  Google Scholar 

  23. R. Gara, M. O. Zouaghi, L. M. H. Alshandoudi, and Y. Arfaoui (2021). J. Mol. Model. 27 (5), 1–12. https://doi.org/10.1007/s00894-021-04729-w.

    Article  CAS  Google Scholar 

  24. Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

  25. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). J. Phys. Chem. 98 (45), 11623–11627. https://doi.org/10.1021/j100096a001.

    Article  CAS  Google Scholar 

  26. R. B. J. S. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72 (1), 650–654. https://doi.org/10.1063/1.438955.

    Article  CAS  Google Scholar 

  27. A. Wang, Y. Wang, J. Jia, L. Feng, C. Zhang, and L. Liu (2013). J. Phys. Chem. A. 117, 5061–5072. https://doi.org/10.1021/jp403145h.

    Article  CAS  PubMed  Google Scholar 

  28. S. F. Lo, S. Y. Wang, M. J. Tsai, and L. D. Lin (2020). Chem. Eng. Res. Design 90 (9), 1397–1406. https://doi.org/10.1016/j.cherd.2011.11.020.

    Article  CAS  Google Scholar 

  29. L. Yang, D. R. Powell, and R. P. Houser (2007). Dalton Trans. 9, 955–964. https://doi.org/10.1039/B617136B.

    Article  Google Scholar 

  30. I. Chérif, M. F. Zid, M. El-Ghozzi, and D. Avignant (2012). Acta Cryst. https://doi.org/10.1107/S1600536812025020.

    Article  Google Scholar 

  31. M. Chao, E. Schemp, and R. D. Rosenstein (1975). Acta Cryst. B31 (12), 2924–2926. https://doi.org/10.1107/S0567740875009284.

    Article  CAS  Google Scholar 

  32. S. Dgachi, M. M. Turnbull, F. Mezzadri, A. J. Norquist, A. Soran, J. Boonmak, G. Nemes, and H. Naïli (2021). Inorganica Chim Acta. https://doi.org/10.1016/j.ica.2020.119997.

    Article  Google Scholar 

  33. S. Dgachi, F. Rahmouni, A. Soran, M. Saoudi, G. Nemes, and H. Naïli (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130996.

    Article  Google Scholar 

  34. C. Orek, B. Gündüz, O. Kaygili, and N. Bulut (2017). Chem. Phys. Lett. 678, 130–138. https://doi.org/10.1016/j.cplett.2017.04.050.

    Article  CAS  Google Scholar 

  35. N. M. Juibari, A. Abbasi, M. Najafi, and S. Geranmayeh (2015). C. R. Chimie 18, 662–667. https://doi.org/10.1016/j.crci.2014.11.006.

    Article  CAS  Google Scholar 

  36. P. Raghunath, M. A. Reddy, C. Gouri, K. Bhanuprakash, and V. J. Rao (2006). J. Phys. Chem. A. 110, 1152–1162. https://doi.org/10.1021/jp0555753.

    Article  CAS  PubMed  Google Scholar 

  37. A. M. B. Salah, R. P. Herrera, and H. Naïli (2018). J. Mol. Struct. 1165, 356–362. https://doi.org/10.1016/j.molstruc.2018.04.002.

    Article  CAS  Google Scholar 

  38. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, and G. Janusas (2020). Nanomaterials 10 (9), 1627. https://doi.org/10.3390/nano10091627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Bizi (2020). Molecules 25 (20), 4656. https://doi.org/10.3390/molecules25204656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi (2020). Cleaner Eng Technol. https://doi.org/10.1016/j.clet.2020.100032.

    Article  Google Scholar 

  41. L. J. Martínez, A. Muñoz-Bonilla, E. Mazario, F. J. Recio, F. J. Palomares, and P. Herrasti (2015). Int. J. Environ. Sci. Technol. 12, 4017–4024. https://doi.org/10.1007/s13762-015-0832-z.

    Article  CAS  Google Scholar 

  42. V. K. Gupta, R. Chandra, I. Tyagi, and M. Verma (2016). J. Colloid Interface Sci. 478, 54–62. https://doi.org/10.1016/j.jcis.2016.05.064.

    Article  CAS  PubMed  Google Scholar 

  43. S. K. Ashan, N. Ziaeifara, and M. Khosravi (2016). Orient J Chem 32 (1), 749–758. https://doi.org/10.13005/ojc/320184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

IC: Conceptualization – single crystal structure determination – formal analysis—writing original draft—editing. SH, IJ and YA: Theoretical calculation – writing review. FM: Adsorption experiments—formal analysis. DD: Writing review—editing. MF: Morphological investigation – writing review—editing. MFZ: Single crystal X-ray diffraction data collection – discussion. SA: Discussion – writing review.

Corresponding authors

Correspondence to Ichraf Chérif or Davoud Dastan.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chérif, I., Hassen, S., Jendoubi, I. et al. A New Hybrid Organic–Inorganic Salt: bis(3-Aminopyridinium)Tetrachlorocobaltate(II), Application in the Synthesis of Nanostructured Co3O4 for Hexavalent Chromium Removal. J Clust Sci 34, 3047–3059 (2023). https://doi.org/10.1007/s10876-023-02446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02446-3

Keywords

Navigation