Skip to main content

Advertisement

Log in

PANI-CNTs Microstructure with Interconnected NiO–NiOOH Particles as Selective Sensing Interface for Methanol Electrochemical Sensor

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

As outstanding electrocatalytic materials, both metal oxide and conducting polymers have been synergically explored to fabricate electrochemical sensors. A novel electrochemical sensing interface was obtained by electrodeposition of the composite film based on polyaniline (PANI), carbon nanotubes (CNTs) and nickel oxide modified on lab-made screen-printed carbon electrode (SPE) for methanol electrooxidation in alkaline medium. The prepared composite electrode was characterized using various methods, including the Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction pattern (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). The methanol electrochemical oxidation of NiO–NiOOH/PANI-CNTs/SPE in an alkaline medium was studied by using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The obtained excellent sensing parameters including a sensor sensitivity of 8.056 × 10–5 mA/(mM cm2) with a limit detection LOD of 5 mM (S/N = 3) in wide range of methanol from 30 to 880 mM (R2 = 0.997) demonstrated that NiO–NiOOH/PANI-CNTs/SPE truly displayed highly electrochemical and catalytic activities for methanol electrooxidation. Furthermore, our proposed SPE sensors exhibited the good stability, repeatability and reproducibility that are crucial for on-site real sample detection and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. O. Peres, R. W. C. Li, E. Y. Yamauchi, R. Lippi, and J. Gruber (2012). Food Chem. 130, 1105. https://doi.org/10.1016/j.foodchem.2011.08.014.

    Article  CAS  Google Scholar 

  2. D. S. Islek and S. Ramadanoglu (2017). Med. Sci. Int. Med. J. 6, 372. https://doi.org/10.5455/medscience.2017.06.8588.

    Article  Google Scholar 

  3. F. Bindler, E. Voges, and P. Laugel (1988). Food Addit. Contam. 5, 343. https://doi.org/10.1080/02652038809373713.

    Article  CAS  PubMed  Google Scholar 

  4. J. A. Kruse (2012). Crit. Care Clin. 28 (4), 661. https://doi.org/10.1016/j.ccc.2012.07.002.

    Article  PubMed  Google Scholar 

  5. H. Ghorbani, A. Nezami, B. Sheikholeslami, A. Hedjazi, and M. Ahmadimanesh (2018). J Occup. Med. Toxicol. 13, 1. https://doi.org/10.1186/s12995-017-0184-3(201.

    Article  PubMed  PubMed Central  Google Scholar 

  6. H. Pontes, P. Guedes de Pinho, S. Casal, H. Carmo, A. Santos, T. Magalhães, F. Remião, F. Carvalho, and M. L. Bastos (2009). J. Chromatogr. Sci. 47, 272. https://doi.org/10.1093/chromsci/47.4.272.

    Article  CAS  PubMed  Google Scholar 

  7. A. I. Haj-Yehia and L. Z. Benet (1996). J. Chromatogr. A 724, 107. https://doi.org/10.1016/0021-9673(95)00986-8.

    Article  CAS  Google Scholar 

  8. S. H. Chen, H. L. Wu, C. H. Yen, S. M. Wu, S. J. Lin, and H. S. Kou (1998). J. Chromatogr. A 799, 93. https://doi.org/10.1016/S0021-9673(97)01055-8.

    Article  CAS  PubMed  Google Scholar 

  9. W.-K. Kuo, H.-P. Weng, J.-J. Hsu, and H. H. Yu (2016). Mater. Chem. Phys. 173, 285. https://doi.org/10.1016/j.matchemphys.2016.02.014.

    Article  CAS  Google Scholar 

  10. B. Tao, J. Zhang, S. Hui, X. Chen, and L. Wan (2010). Electrochim. Acta 55, 5019. https://doi.org/10.1016/j.electacta.2010.04.013.

    Article  CAS  Google Scholar 

  11. M. M. Rahman, M. A. Hussein, K. A. Alamry, F. M. Al Shehry, and A. M. Asiri (2016). Talanta 150, 71. https://doi.org/10.1016/j.talanta.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  12. S. K. Verma, P. Kar, D. J. Yang, and A. Choudhury (2015). Sens. Actuators B 219, 199. https://doi.org/10.1016/j.snb.2015.04.117.

    Article  CAS  Google Scholar 

  13. Q. Qiu, N. Jiang, L. Ge, X. Li, and X. Chen (2020). J. Mater. Sci. 55, 15681. https://doi.org/10.1007/s10853-020-05146-9.

    Article  CAS  Google Scholar 

  14. M. Hasanzadeh and R. E. Sabzi (2015). Curr. Chem. Lett. 4, 45. https://doi.org/10.5267/j.ccl.2015.3.003.

    Article  Google Scholar 

  15. D.-S. Park, M.-S. Won, R. N. Goyal, and Y.-B. Shim (2012). Sens. Actuators B 174, 45. https://doi.org/10.1016/j.snb.2012.08.017.

    Article  CAS  Google Scholar 

  16. M. S. Lee, J. Sohn, J. Shim, and W. M. Lee (2007). Sens. Actuators B 124, 323. https://doi.org/10.1016/j.snb.2006.12.038.

    Article  CAS  Google Scholar 

  17. J. Geng, X. Li, G. Sun, and B. Yi (2010). Sen. Actuators B 147, 612. https://doi.org/10.1016/j.snb.2010.03.047.

    Article  CAS  Google Scholar 

  18. Y. Li, D. Deng, X. Xing, N. Chen, X. Liu, X. Xiao, and Y. Wang (2016). Sens. Actuators B 237, 133. https://doi.org/10.1016/j.snb.2016.06.088.

    Article  CAS  Google Scholar 

  19. L. Chandra, R. Dwivedi, and V. N. Mishra (2017). Mater. Res. Express. 4, 105030. https://doi.org/10.1088/2053-1591/aa8dc0.

    Article  Google Scholar 

  20. F.-T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu (2009). J. Taiwan Inst. Chem. Eng. 40 (5), 528. https://doi.org/10.1016/j.jtice.2009.03.008.

    Article  CAS  Google Scholar 

  21. R. A. Hameed and K. El-Khatib (2010). Int. J. Hydrog. Energy 35 (6), 2517. https://doi.org/10.1016/j.ijhydene.2009.12.145.

    Article  CAS  Google Scholar 

  22. J. P. J. de Oliveira, M. B. S. de Emeterio, A. C. de Sá, L. L. Paim, and M. de Valle (2019). Proceedings 42, 5. https://doi.org/10.3390/ecsa-6-06544.

    Article  Google Scholar 

  23. M. R. Anderson, B. R. Mattes, H. Reiss, and R. B. Kaner (1991). Science 252, 1412. https://doi.org/10.1126/science.252.5011.1412.

    Article  CAS  PubMed  Google Scholar 

  24. O. Lupan, V. Cretu, M. Deng, D. Gedamu, I. Paulowicz, S. Kaps, Y. K. Mishra, O. Polonskyi, C. Zamponi, L. Kienle, V. Trofim, I. Tiginyanu, and R. Adelung (2014). J. Phys. Chem. C 118, 15068. https://doi.org/10.1021/jp5038415.

    Article  CAS  Google Scholar 

  25. P. V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, V. Duppel, and Y. K. Mishra (2015). Adv. Electron. Mater. 1, 1500081. https://doi.org/10.1002/aelm.201500081.

    Article  CAS  Google Scholar 

  26. Q. Li, N. Li, J. An, and H. Pang (2020). Controllable synthesis of mesoporous NiO/Ni nanorod as an excellent catalyst for urea electrooxidation. Inorg Chem Front. https://doi.org/10.1039/d0qi00316f.

    Article  Google Scholar 

  27. N. Behera, J. Duan, W. Jin, and S. Kitagawa (2021). The chemistry and applications of flexible porous coordination polymers. EnergyChem 3 (6), 100067. https://doi.org/10.1016/j.enchem.2021.100067.

    Article  CAS  Google Scholar 

  28. Q. Li, S. Zheng, M. Du, and H. Pang (2021). Ultrathin nanosheet metal–organic framework@NiO/Ni nanorod composites. Chem. Eng. J. 417 (129201), 1385–8947. https://doi.org/10.1016/j.cej.2021.129201.

    Article  CAS  Google Scholar 

  29. W. Li, X. Guo, P. Geng, M. Du, Q. Jing, X. Chen, G. Zhang, H. Li, Q. Xu, P. Braunstein, and H. Pang (2021). Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, 2105163. https://doi.org/10.1002/adma.202105163.

    Article  CAS  Google Scholar 

  30. S. Zheng, Q. Li, H. Xue, H. Pang, and Q. Xu (2020). A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 7 (2), 305–314. https://doi.org/10.1093/nsr/nwz137.

    Article  CAS  PubMed  Google Scholar 

  31. A. B. Abou Hammad, M. E. Abd El-Aziz, M. S. Hasanin, and S. Kamel (2019). A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr. Polym. 216, 54–62. https://doi.org/10.1016/j.carbpol.2019.03.038.

    Article  CAS  PubMed  Google Scholar 

  32. A. M. Youssef, M. S. Hasanin, M. E. Abd El-Aziz, and G. M. Turky (2021). Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. Int. J. Biol. Macromol. 167, 1435–1444. https://doi.org/10.1016/j.ijbiomac.2020.11.097.

    Article  CAS  PubMed  Google Scholar 

  33. M. Hasanin, E. A. Mwafy, and A. M. Youssef (2021). Electrical properties of conducting tertiary composite based on biopolymers and polyaniline. J. Bio Tribo Corros. 7, 133. https://doi.org/10.1007/s40735-021-00573-w.

    Article  Google Scholar 

  34. M. S. Hasanin and S. A. Al Kiey (2020). Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. Int. J. Biol. Macromol. 161, 345–354. https://doi.org/10.1016/j.ijbiomac.2020.06.040.

    Article  CAS  PubMed  Google Scholar 

  35. N. T. K. Ngan, N. T. Thom, N. N. X. An, L. V. Hai, P. T. Nam, H. L. T. Nguyen, P. V. Viet, N. T. T. Trang, N. T. Hoang, and D. L. Tran (2021). Design of NiOOH/PANI-Gr and NiOOH/PANI-CNTs interfaces for sensitive and selective methanol electrochemical sensors. J. Electrochem. Soc. 168, 107509. https://doi.org/10.1149/1945-7111/ac2d44.

    Article  CAS  Google Scholar 

  36. N. X. Nguyen, T. K. Nguyen, T. N. Pham, T. T. Nguyen, T. T. Nguyen, N. T. Hoang, and T. Dai Lam (2021). Efficient nickel or copper oxides decorated graphene–polyaniline interface for application in selective methanol sensing. RSC Adv. 11, 28573. https://doi.org/10.1039/d1ra04164a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. D. Tran, D. T. Nguyen, B. H. Nguyen, Q. P. Do, and H. Le Nguyen (2011). Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta 85, 1560. https://doi.org/10.1016/j.talanta.2011.06.048.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Qiao, C. M. Li, S.-J. Bao, and Q.-L. Bao (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79. https://doi.org/10.1016/j.jpowsour.2007.03.048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Vietnam Academy of Science and Technology (VAST) under the grant number NCXS 01.01/22-24.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Viet Le or Lam Dai Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Pham, N.T., Nguyen, D.T. et al. PANI-CNTs Microstructure with Interconnected NiO–NiOOH Particles as Selective Sensing Interface for Methanol Electrochemical Sensor. J Clust Sci 34, 1259–1267 (2023). https://doi.org/10.1007/s10876-022-02297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02297-4

Keywords

Navigation