Skip to main content
Log in

Kitchen Waste Derived Porous Nanocarbon Spheres for Metal Free Degradation of Azo Dyes: An Environmental Friendly, Cost Effective Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A porous nanocarbon spheres (PNCSs) were prepared from kitchen waste and successfully used for the metal and oxidant free degradation of azo compounds. The PNCSs obtained by the pyrolysis of onion peel, at 1000 °C, were found to be effective catalysts for the reductive degradation of azo dyes in presence of hydrazine hydrate. The reductive cleavage of azo bonds (–N=N–) was achieved under microwave irradiation. The degradation process was completed in a span of 10–40 min; the process was monitored by ultraviolet–visible spectroscopy. Fourier transform infrared spectroscopy was also used for the illustration of azo degradation. Interestingly, the reductive degradation of azo dyes produced corresponding amines and they were successfully reused for the preparation of fresh azo compounds. The work, therefore, highlights the valorization of largely produced kitchen-wastes to the sustainable PNCSs and it also provides a platform to demonstrate their applicability as highly cost-effective catalysts for bulk scale chemical transformations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Bratovcic (2019). Different applications of nanomaterials and their impact on the environment. Int. J. Mater. Sci. Eng. 5, 1–7. https://doi.org/10.14445/23948884/IJMSE-V5I1P101.

    Article  Google Scholar 

  2. M. Shafiq, S. Anjum, C. Hano, I. Anjum, and B. H. Abbasi (2020). An overview of the applications of nanomaterials and nanodevices in the food industry. Foods (Basel, Switzerland) 9, 148. https://doi.org/10.3390/foods9020148.

    Article  CAS  PubMed  Google Scholar 

  3. M. Dimitrijevic, N. Karabasil, M. Boskovic, V. Teodorovic, D. Vasilev, V. Djordjevic, N. Kilibarda, and N. Cobanovic (2015). Safety aspects of nanotechnology applications in food packaging. Procedia Food Sci. 5, 57–60. https://doi.org/10.1016/j.profoo.2015.09.015.

    Article  Google Scholar 

  4. P. M. Kopittke, E. Lombi, P. Wang, J. K. Schjoerring, and S. Husted (2019). Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano 6, 3513–3524. https://doi.org/10.1039/C9EN00971J.

    Article  CAS  Google Scholar 

  5. S. Kaul, N. Gulati, D. Verma, S. Mukherjee, and U. Nagaich (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm. 2018, 3420204. https://doi.org/10.1155/2018/3420204.

    Article  CAS  Google Scholar 

  6. U. P. M. Ashik, A. Viswan, S. Kudo, and J. Hayashi, Nanomaterials as catalysts, in S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, and S. B. T. S. Thomas (eds.), Micro Nano Technology (Woodhead Publishing, Sawston, 2018), pp. 45–82.

    Google Scholar 

  7. K. Silas, W. A. W. A. K. Ghani, T. S. Y. Choong, and U. Rashid (2019). Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: A review. Catal. Rev. 61, 134–161. https://doi.org/10.1080/01614940.2018.1482641.

    Article  CAS  Google Scholar 

  8. S. Supriya, V. S. Shetti, and G. Hegde (2018). Conjugated systems of porphyrin–carbon nanoallotropes: a review. New J. Chem. 42, 12328–12348. https://doi.org/10.1039/C8NJ02254B.

    Article  Google Scholar 

  9. S. Supriya, G. S. Ananthnag, V. S. Shetti, B. M. Nagaraja, and G. Hegde (2020). Cost-effective bio-derived mesoporous carbon nanoparticles-supported palladium catalyst for nitroarene reduction and Suzuki-Miyaura coupling by microwave approach. Appl. Organomet. Chem. 34, e5384. https://doi.org/10.1002/aoc.5384.

    Article  CAS  Google Scholar 

  10. G.L.-M. Léonard, S. L. Pirard, A. Belet, B. Grignard, C. Detrembleur, C. Jérôme, and B. Heinrichs (2019). Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides. Chem.Eng. J. 371, 719–729. https://doi.org/10.1016/j.cej.2019.04.055.

    Article  CAS  Google Scholar 

  11. S. Sarkar, N. T. Ponce, A. Banerjee, R. Bandopadhyay, S. Rajendran, and E. Lichtfouse (2020). Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ. Chem. Lett. 18, 1569–1580. https://doi.org/10.1007/s10311-020-01021-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, and Z. Gu (2016). Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 144, 1530–1535. https://doi.org/10.1016/j.chemosphere.2015.10.040.

    Article  CAS  PubMed  Google Scholar 

  13. S. L. Foster, K. Estoque, M. Voecks, N. Rentz, and L. F. Greenlee (2019). Removal of synthetic azo dye using bimetallic nickel-iron nanoparticles. J. Nanomater. 2019, 9807605. https://doi.org/10.1155/2019/9807605.

    Article  CAS  Google Scholar 

  14. S. Batool, S. Akib, M. Ahmad, K. S. Balkhair, and M. A. Ashraf (2014). Study of modern nano enhanced techniques for removal of dyes and metals. J. Nanomater. 2014, 864914. https://doi.org/10.1155/2014/864914.

    Article  CAS  Google Scholar 

  15. W. Ruan, J. Hu, J. Qi, Y. Hou, C. Zhou, and X. Wei (2019). Removal of dyes from wastewater by nanomaterials: a review. Adv. Mater. Lett. 10, 9–20. https://doi.org/10.5185/amlett.2019.2148.

    Article  CAS  Google Scholar 

  16. M. Fatima, R. Farooq, R. W. Lindström, and M. Saeed (2017). A review on biocatalytic decomposition of azo dyes and electrons recovery. J. Mol.Liq. 246, 275–281. https://doi.org/10.1016/j.molliq.2017.09.063.

    Article  CAS  Google Scholar 

  17. Ş Gül and Ö. Özcan-Yıldırım (2009). Degradation of reactive red 194 and reactive yellow 145 azo dyes by O3 and H2O2/UV-C processes. Chem. Eng. J. 155, 684–690. https://doi.org/10.1016/j.cej.2009.08.029.

    Article  CAS  Google Scholar 

  18. A. Rehorek, M. Tauber, and G. Gübitz (2004). Application of power ultrasound for azo dye degradation. Ultrason. Sonochem. 11, 177–182. https://doi.org/10.1016/j.ultsonch.2004.01.030.

    Article  CAS  PubMed  Google Scholar 

  19. V. K. Gupta, S. Saravanan, S. Agarwal, F. Gracia, M. M. Khan, J. Qin, and R. V. Mangalaraja (2017). Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J. Mol. Liq. 232, 423–430. https://doi.org/10.1016/j.molliq.2017.02.095.

    Article  CAS  Google Scholar 

  20. J. Fan, X. Hu, Z. Xie, K. Zhang, and J. Wang (2012). Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation. Chem. Eng. J. 179, 44–51. https://doi.org/10.1016/j.cej.2011.10.029.

    Article  CAS  Google Scholar 

  21. M. Cai, J. Su, Y. Zhu, X. Wei, M. Jin, H. Zhang, C. Dong, and Z. Wei (2016). Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process. Ultrason. Sonochem. 28, 302–310. https://doi.org/10.1016/j.ultsonch.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  22. H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, and G. Zhao (2015). Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A Chem. 400, 81–89. https://doi.org/10.1016/j.molcata.2015.02.007.

    Article  CAS  Google Scholar 

  23. S. Rojas and P. Horcajada (2020). Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem .Rev. 120, 8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797.

    Article  CAS  PubMed  Google Scholar 

  24. A. Stolz (2001). Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56, 69–80. https://doi.org/10.1007/s002530100686.

    Article  CAS  PubMed  Google Scholar 

  25. J. H. Ramirez, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, and L. M. Madeira (2007). Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl. Catal. B Environ. 75, 312–323. https://doi.org/10.1016/j.apcatb.2007.05.003.

    Article  CAS  Google Scholar 

  26. A. K. Mishra, T. Arockiadoss, and S. Ramaprabhu (2010). Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem. Eng. J. 162, 1026–1034. https://doi.org/10.1016/j.cej.2010.07.014.

    Article  CAS  Google Scholar 

  27. R. A. Pereira, M. F. R. Pereira, M. M. Alves, and L. Pereira (2014). Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl. Catal. B Environ. 144, 713–720. https://doi.org/10.1016/j.apcatb.2013.07.009.

    Article  CAS  Google Scholar 

  28. P. Thirukumaran, R. Atchudan, A. S. Parveen, K. Kalaiarasan, Y. R. Lee, and S.-C. Kim (2019). Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon balls and their application in photodegradation of organic dyes. Sci .Rep. 9, 19509. https://doi.org/10.1038/s41598-019-56109-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. Atchudan, T. N. J. I. Edison, S. Perumal, D. Karthikeyan, and Y. R. Lee (2017). Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation. J. Photochem. Photobiol. A Chem. 333, 92–104. https://doi.org/10.1016/j.jphotochem.2016.10.021.

    Article  CAS  Google Scholar 

  30. R. Atchudan, T. N. J. I. Edison, S. Perumal, M. Shanmugam, and Y. R. Lee (2017). Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A Chem. 337, 100–111. https://doi.org/10.1016/j.jphotochem.2017.01.021.

    Article  CAS  Google Scholar 

  31. J.-M. Wu and W. Wen (2010). Catalyzed degradation of azo dyes under ambient conditions. Environ. Sci. Technol. 44, 9123–9127. https://doi.org/10.1021/es1027234.

    Article  CAS  PubMed  Google Scholar 

  32. P. Satapathy, R. Adiga, M. Kumar, G. Hegde, and S. K. Prasad (2021). Porous nanocarbon particles drive large magnitude and fast photomechanical actuators. J. Nanostruct. Chem.. https://doi.org/10.1007/s40097-021-00414-9.

    Article  Google Scholar 

  33. A. Rastogi, F. P. Pandey, A. S. Parmar, S. Singh, G. Hegde, and R. Manohar (2021). Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties. J. Nanostruct. Chem.. https://doi.org/10.1007/s40097-020-00382-6.

    Article  Google Scholar 

  34. P. Kanagavalli, G. R. Pandey, V. S. Bhat, M. Veerapandian, and G. Hegde (2021). Nitrogenated-carbon nanoelectrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction. J. Nanostruct. Chem.. https://doi.org/10.1007/s40097-020-00370-w.

    Article  Google Scholar 

  35. A. John, L. Benny, A. R. Cherian, S. Y. Narahari, A. Varghese, and G. Hegde (2021). Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J. Nanostruct. Chem. 11, 1–31. https://doi.org/10.1007/s40097-020-00372-8.

    Article  CAS  Google Scholar 

  36. S. Liu, Y. Zhao, B. Zhang, H. Xia, J. Zhou, W. Xie, and H. Li (2018). Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J. Power Sources 381, 116–126. https://doi.org/10.1016/j.jpowsour.2018.02.014.

    Article  CAS  Google Scholar 

  37. Y. Liu, L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, and D. H. C. Chua (2015). Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochim. Acta 151, 489–496. https://doi.org/10.1016/j.electacta.2014.11.086.

    Article  CAS  Google Scholar 

  38. P. Hou, G. Xing, L. Tian, G. Zhang, H. Wang, C. Yu, Y. Li, and Z. Wu (2019). Hollow carbon spheres/graphene hybrid aerogels as high-performance adsorbents for organic pollution. Sep. Purif. Technol. 213, 524–532. https://doi.org/10.1016/j.seppur.2018.12.032.

    Article  CAS  Google Scholar 

  39. X.-K. Kong, C.-L. Chen, and Q.-W. Chen (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43, 2841–2857. https://doi.org/10.1039/C3CS60401B.

    Article  CAS  PubMed  Google Scholar 

  40. A. Primo, V. Parvulescu, and H. Garcia (2017). Graphenes as metal-free catalysts with engineered active sites. J. Phys. Chem. Lett. 8, 264–278. https://doi.org/10.1021/acs.jpclett.6b01996.

    Article  CAS  PubMed  Google Scholar 

  41. T. Asefa (2016). Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 49, 1873–1883. https://doi.org/10.1021/acs.accounts.6b00317.

    Article  CAS  PubMed  Google Scholar 

  42. A. Kumar, G. Hegde, S. A. B. A. Manaf, Z. Ngaini, and K. V. Sharma (2014). Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chem. Commun. 50, 12702–12705. https://doi.org/10.1039/c4cc04378b.

    Article  CAS  Google Scholar 

  43. G. Sriram, S. Supriya, M. Kurkuri, and G. Hegde (2019). Efficient CO2 adsorption using mesoporous carbons from biowastes. Mater. Res. Express 7, 15605. https://doi.org/10.1088/2053-1591/ab5f2c.

    Article  CAS  Google Scholar 

  44. G. A. M. Ali, S. Supriya, K. F. Chong, E. R. Shaaban, H. Algarni, T. Maiyalagan, and G. Hegde (2019). Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Convers. Biorefinery 11, 1311–1323. https://doi.org/10.1007/s13399-019-00520-3.

    Article  CAS  Google Scholar 

  45. K. B. Akshaya, V. S. Bhat, A. Varghese, L. George, and G. Hegde (2019). Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 166, B1097–B1106. https://doi.org/10.1149/2.0251913jes.

    Article  CAS  Google Scholar 

  46. S. Supriya, G. Sriram, Z. Ngaini, C. Kavitha, M. Kurkuri, I. P. De Padova, and G. Hegde (2020). The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valorization 11, 3821–3831. https://doi.org/10.1007/s12649-019-00675-0.

    Article  CAS  Google Scholar 

  47. L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala, and J. W. Ahn (2019). Synthesis of nano-calcium oxide from waste eggshell by sol–gel method. Sustain 11, 1–10. https://doi.org/10.3390/su11113196.

    Article  CAS  Google Scholar 

  48. X. Luo, X. Song, Y. Cao, L. Song, and X. Bu (2020). Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. RSC Adv. 10, 7976–7986. https://doi.org/10.1039/C9RA10460G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. N. Sunil, W. S. Yam, and G. Hegde (2019). Photoresponsive behavior of hydrophilic/hydrophobic-based novel azobenzene mesogens: synthesis, characterization and their application in optical storage devices. RSC Adv. 9, 40588–40606. https://doi.org/10.1039/C9RA08211E.

    Article  Google Scholar 

  50. K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, and S. I. Woo (2010). Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 12, 1052–1055. https://doi.org/10.1016/j.elecom.2010.05.023.

    Article  CAS  Google Scholar 

  51. X. Kong, Z. Sun, M. Chen, C. Chen, and Q. Chen (2013). Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 6, 3260–3266. https://doi.org/10.1039/C3EE40918J.

    Article  CAS  Google Scholar 

  52. X. Zhou, P. Wang, Y. Zhang, L. Wang, L. Zhang, L. Zhang, L. Xu, and L. Liu (2017). Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J. Mater. Chem. A 5, 12958–12968. https://doi.org/10.1039/C7TA02113E.

    Article  CAS  Google Scholar 

  53. B. M. Matsagar, R.-X. Yang, S. Dutta, Y. S. Ok, and K.C.-W. Wu (2021). Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J. Mater. Chem. A 9, 3703–3728. https://doi.org/10.1039/D0TA09706C.

    Article  CAS  Google Scholar 

  54. Q.-Q. Zhuang, J.-P. Cao, Y. Wu, M. Zhao, X.-Y. Zhao, Y.-P. Zhao, and H.-C. Bai (2021). Heteroatom nitrogen and oxygen co-doped three-dimensional honeycomb porous carbons for methylene blue efficient removal. Appl. Surf. Sci.. https://doi.org/10.1016/j.apsusc.2021.149139.

    Article  Google Scholar 

Download references

Acknowledgements

G.H. thanks the Department of Science and Technology, Government of India for providing the project Grant (File Number: SR/NM/NT-1026/2017). Authors also thank TEQIP-III for the support of microwave synthesizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurumurthy Hegde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, S., Ananthnag, G.S., Maiyalagan, T. et al. Kitchen Waste Derived Porous Nanocarbon Spheres for Metal Free Degradation of Azo Dyes: An Environmental Friendly, Cost Effective Method. J Clust Sci 34, 243–254 (2023). https://doi.org/10.1007/s10876-021-02208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02208-z

Keywords

Navigation