Skip to main content

Advertisement

Log in

Porous nanocarbon particles drive large magnitude and fast photomechanical actuators

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Better NIR (near infrared)-driven photomechanical actuation than reported for films containing carbon nanostructures such as carbon nanotubes and graphene has been achieved by incorporating porous carbon nanoparticles (PCNs) into single-layer films of polydimethylsiloxane (PDMS). The PCNs being obtained from a bio-waste source adds an exciting dimension to this work. The specific surface area (Asurf) of the pores, controlled using the pyrolization temperature and varying over a factor of 600 is seen to have a strong influence on the magnitude of the actuation as well as the time response of light-driven and relaxation processes. The quantity of the curing agent polymerizing the PDMS also has a notable role. The already significant actuation realized for single-layer films can be further enhanced (factor of two) by backing the PDMS film with an ultrathin gold layer. This addition, however, provides a novel way to control the direction of actuation, being opposite for the single and bilayer films. The mechanical properties obtained from stress versus strain measurements and the morphology of the films as imaged by electron microscopy, besides the coefficient of thermal expansion, have been employed to analyze the various observed behaviors. An important finding from the images is that the crystallinity of the PCNs plays a vital role in the magnitude of actuation: more the amorphous nature, larger is the actuation. Based on the results, which have much for bioengineering applications, a simple photo-stimulated LED switch is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its supplementary material.

References

  1. Li, F., Hou, H., Yin, J., Jiang, X.: Near-infrared light–responsive dynamic wrinkle patterns. Sci. Adv. 4, eaar5762 (2018)

    Article  Google Scholar 

  2. Nagar, R., Teki, R., Srivastava, I., Singh, J.P., Koratkar, N.: Carbon nanotube photo-thermo-mechanical actuator. J. Nanosci. Nanotechnol. 11, 935–940 (2011)

    Article  CAS  Google Scholar 

  3. Liu, Y.-Q., Ma, J.-N., Liu, Y., Han, D.-D., Jiang, H.-B., Mao, J.-W., Han, C.-H., Jiao, Z.-Z., Zhang, Y.-L.: Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films. Opt. Mater. Express. 7, 2617–2625 (2017)

    Article  CAS  Google Scholar 

  4. Zhou, Z., Li, Q., Chen, L., Liu, C., Fan, S.: A large-deformation phase transition electrothermal actuator based on carbon nanotube–elastomer composites. J. Mater. Chem. B 4, 1228–1234 (2013)

    Article  Google Scholar 

  5. Vach, P.J., Brun, N., Bennet, M., Bertinetti, L., Widdrat, M., Baumgartner, J., Klumpp, S., Fratzl, P., Faivre, D.: Selecting for function: solution synthesis of magnetic nanopropellers. Nano Lett. 13, 5373–5378 (2013)

    Article  CAS  Google Scholar 

  6. Leeladhar., Singh, J.P.: Photomechanical and chemomechanical actuation behavior of graphene–poly(dimethylsiloxane)/gold bilayer tube for multimode soft grippers and volatile organic compounds detection applications. ACS Appl. Mater. Interfaces 10, 33956–33965 (2018)

    Article  CAS  Google Scholar 

  7. Meng, H., Hu, J.: A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J. Intell. Mater. Syst. Struct. 21, 859–885 (2010)

    Article  CAS  Google Scholar 

  8. Ube, T., Kawasaki, K., Ikeda, T.: Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv. Mater. 28, 8212–8217 (2016)

    Article  CAS  Google Scholar 

  9. Knopf, G., Uchino, K.: Light driven micromachines. Taylor and Francis CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  10. Ahir, S.V., Terentjev, E.M.: Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491–495 (2005)

    Article  CAS  Google Scholar 

  11. Elnaggar, E.M., Kabel, K.I., Farag, A.A., Al-Gamal, A.G.: Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J. Nanostructure Chem. 7, 75–83 (2017)

    Article  CAS  Google Scholar 

  12. Zhang, X., Yu, Z., Wang, C., Zarrouk, D., Seo, J.-W.T., Cheng, J.C., Buchan, A.D., Takei, K., Zhao, Y., Ager, J.W., Zhang, J., Hettick, M., Hersam, M.C., Pisano, A.P., Fearing, R.S., Javey, A.: Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 5, 2983 (2014)

    Article  Google Scholar 

  13. Shi, K., Liu, Z., Wei, Y.-Y., Wang, W., Ju, X.-J., Xie, R., Chu, L.-Y.: Near-Infrared light-responsive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility. ACS Appl. Mater. Interfaces 7, 27289–27298 (2015)

    Article  CAS  Google Scholar 

  14. Liu, H., Niu, D., Jiang, W., Zhao, T., Lei, B., Yin, L., Shi, Y., Chen, B., Lu, B.: Illumination-oriented and thickness-dependent photomechanical bilayer actuators realized by graphene-nanoplatelets. Sens. Actuators A Phys. 239, 45–53 (2016)

    Article  CAS  Google Scholar 

  15. Loomis, J., Fan, X., Khosravi, F., Xu, P., Fletcher, M., Cohn, R.W., Panchapakesan, B.: Graphene/elastomer composite-based photo-thermal nanopositioners. Sci. Rep. 3, 1900 (2013)

    Article  Google Scholar 

  16. Lu, S., Panchapakesan, B.: Photomechanical responses of carbon nanotubes/polymer actuators. Nanotechnology 18, 305502 (2007)

    Article  Google Scholar 

  17. Loomis, J., King, B., Burkhead, T., Xu, P., Bessler, N., Terentjev, E., Panchapakesan, B.: Graphene-nanoplatelate-based photomechanical actuators. Nanotechnology 23, 045501 (2012)

    Article  Google Scholar 

  18. Niu, D., Jiang, W., Liu, H., Zhao, T., Lei, B., Li, Y., Yin, L., Shi, Y., Chen, B., Lu, B.: Reversible bending behaviors of photomechanical soft actuators based on graphene nanocomposites. Sci. Rep. 6, 27366 (2016)

    Article  Google Scholar 

  19. Leeladhar., Singh, J.P.: Human skin-inspired multiresponsive actuators based on graphene oxide/polydimethylsiloxane bilayer film: bi-directional transformation of semi-tube into plane sheet/tube under different stimuli. Smart Mater. Struct. 29, 75022 (2020)

    Article  CAS  Google Scholar 

  20. Benny, L., John, A., Varghese, A., Hegde, G., George, L.: Waste elimination to porous carbonaceous materials for the application of electrochemical sensors: recent developments. J. Clean. Prod. 290, 125759 (2021)

    Article  CAS  Google Scholar 

  21. Tatrari, G., Karakoti, M., Tewari, C., Pandey, S., Bohra, B.S., Dandapat, A., Sahoo, N.G.: Solid waste-derived carbon nanomaterials for supercapacitor applications: a recent overview. Mater. Adv. 2, 1454–1484 (2021)

    Article  CAS  Google Scholar 

  22. Kanagavalli, P., Pandey, G.R., Bhat, V.S., Veerapandian, M., Hegde, G.: Nitrogenated-carbon nanoelectrocatalyst advertently processed from bio-waste of allium sativum for oxygen reduction reaction. J. Nanostructure Chem. (2021). https://doi.org/10.1007/s40097-020-00370-w

    Article  Google Scholar 

  23. Han, B., Zhang, Y.-L., Chen, Q.-D., Sun, H.-B.: Carbon-based photothermal actuators. Adv. Funct. Mater. 28, 1802235 (2018)

    Article  Google Scholar 

  24. Jiang, W., Niu, D., Liu, H., Wang, C., Zhao, T., Yin, L., Shi, Y., Chen, B., Ding, Y., Lu, B.: Robotics: photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct. Mater. 24, 7597 (2014)

    Article  Google Scholar 

  25. Hu, Y., Wu, G., Lan, T., Zhao, J., Liu, Y., Chen, W.: Graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 27, 7867 (2015)

    Article  CAS  Google Scholar 

  26. Supriya, S., Sriram, G., Ngaini, Z., Chintala, K., Kurkuri, M., Paola De Padova, I., Hegde, G.: The role of temperature on physical-chemical properties of green synthesized porous carbonnanoparticles. Waste Biomass Valoriz. 11, 3821–3831 (2020)

    Article  CAS  Google Scholar 

  27. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  28. Endo, M., Kim, V.A., Nishimura, K., Hayashi, T., Matushita, T., Rand, B., Appleyard, S.P., Yardim, M.F.: Preparation and structure of carbon fibres and carbon nanotubes from the vapour phase BT. In: Design and control of structure of advanced carbon materials for enhanced performance, pp. 207–216. Springer, Netherlands (2001)

    Chapter  Google Scholar 

  29. Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 3, 1–30 (1974)

    Article  Google Scholar 

  30. Jurkiewicz, K., Pawlyta, M., Burian, A.: Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C J Carbon Res 4, 68 (2018)

    Article  CAS  Google Scholar 

  31. Leeladhar., Raturi, P., Kumar, A., Singh, J.P.: Graphene-polydimethylsiloxane/chromium bilayer-based flexible, reversible, and large bendable photomechanical actuators. Smart Mater. Struct. 26, 095030 (2017)

    Article  Google Scholar 

  32. Santra, S., Hu, G., Howe, R.C.T., De Luca, A., Ali, S.Z., Udrea, F., Gardner, J.W., Ray, S.K., Guha, P.K., Hasan, T.: CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)

    Article  CAS  Google Scholar 

  33. Cviklinski, J., Tajbakhsh, A.R., Terentjev, E.M.: UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur. Phys. J. E 9, 427 (2002)

    Article  CAS  Google Scholar 

  34. Dawson, N.J., Kuzyk, M.G., Neal, J., Luchette, P., Palffy-Muhoray, P.: Experimental studies of the mechanismsof photomechanical effects in a nematicliquid crystal elastomer. J. Opt. Soc. Am. 28, 1916 (2011)

    Article  CAS  Google Scholar 

  35. Leeladhar., Raturi, P., Kumar, A., Singh, J.P.: Photomechanical effects in polymer nanocomposites: wireless transduction of light into work. In: Photomechanical materials, composites, and systems: wireless transduction of light into work, pp. 179–231. John Wiley & Sons Inc., Hoboken (2017)

    Google Scholar 

  36. Zhou, B., Bernhardt, E., Bhuyan, A., Ghorbanishiadeh, Z., Rasmussen, N., Lanska, J., Kuzyk, M.G.: Theoretical and experimental studies of photomechanical materials. J. Opt. Soc. Am. B 36, 1492 (2019)

    Article  CAS  Google Scholar 

  37. Panchapakesan, B., Khosravi, F., Loomis, J., Terentjev, E.: Surface treated Poly(dimethylsiloxane) as a gate dielectric in solution-processed organic field-effect transistors. ACS Omega 3, 11278–11285 (2018)

    Article  Google Scholar 

  38. Goutianos, S., Peijs, T.: The optimisation of flax fibre yarns for the development of high-performance natural fibre composites. Adv. Compos. Lett. 12, 237–241 (2003)

    Article  Google Scholar 

  39. Tyagi, G.K.: Yarn structure and properties from different spinning techniques. In: Woodhead publishing series in textiles: advances in yarn spinning technology, pp. 119–154. Woodhead Publishing, Elsevier, UK (2010)

    Chapter  Google Scholar 

  40. Mag-isa, A.E., Jang, B., Kim, J.-H., Lee, H.-J., Oh, C.-S.: Coefficient of thermal expansion measurements for freestanding nanocrystalline Ultra-Thin Gold Films. Int. J. Precis. Eng. Manuf. 15, 105–110 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities, and the scientific and technical assistance (by Mr. Arun D) of the Transmission Electron Microscopy Facility at “Centre for Nano and Soft Matter Sciences, Bengaluru”. Funding support from the Thematic project (SR/NM/TP-2 5/2016), Nano Mission, DST, New Delhi, India, is gratefully acknowledged. One of us (PS) thanks DST Inspire for a fellowship. One of the authors Gurumurthy Hegde would like to acknowledge DST-Nanomission for providing financial support with file No SR/NM/NT-1026/2017 for carrying nano-materials related works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishna Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40097_2021_414_MOESM1_ESM.docx

Supplementary file1 See electronic supplementary material for SEM images of the particles and Time series photographs of actuation (DOCX 32218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, P., Adiga, R., Kumar, M. et al. Porous nanocarbon particles drive large magnitude and fast photomechanical actuators. J Nanostruct Chem 12, 235–248 (2022). https://doi.org/10.1007/s40097-021-00414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00414-9

Keywords

Navigation