Skip to main content

Advertisement

Log in

An economical green route synthesis of carbon spheres derived from kitchen biowastes for supercapacitor application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The increasing energy demands and worsened environmental conditions paved the way for developing materials that can be recycled easily. The huge amount of kitchen bio-waste thrown in the open environment has also led to environmental deterioration. Herein, we have elucidated a facile green route for the synthesis of carbon spheres from kitchen wastes by hydrothermal method. The XRD and FTIR confirmed the presence of carbon spheres while FESEM with EDX depicted the carbon spheres' spherical morphology and elemental composition. BET analysis revealed that the increase in pore volume resulted in a decrease in the electrochemical performance. The electrochemical performances of carbon spheres have been compared through CV, GCD, and EIS studies. Potato peel-derived carbon spheres (P2) showed maximum specific capacitance i.e., 1987.5 F/g at 0.2 A/g current density in 2 M H2SO4 electrolytic solution. The carbon spheres also showed good capacitance retention capability up to 6000 cycles, out of which P2 showed maximum retention capacity (91.66%), inferring their excellent potential as future electrode materials for supercapacitor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. H. Yang, S. Ye, J. Zhou, and T. Liang, Front. Chem. 7, (2019).

  2. H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7, 1 (2017)

    Google Scholar 

  3. S. Unknown, P. Chand, A. Joshi, J. Energy Storage 39, 102646 (2021)

    Google Scholar 

  4. S. Majid, A.S.G. Ali, W.Q. Cao, R. Reza, Q. Ge, Xinxing Tan Cailiao/New Carbon Mater. 36, 546 (2021)

    Google Scholar 

  5. W. Zhang, R.R. Cheng, H.H. Bi, Y.H. Lu, L.B. Ma, X.J. He, Xinxing Tan Cailiao/New Carbon Mater. 36, 69 (2021)

    Google Scholar 

  6. C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Adv. Mater. 22, 28 (2010)

    Google Scholar 

  7. S. Chaudhary, M. Raja, O.P. Sinha, Adv. Nat. Sci. Nanosci. Nanotechnol. 12, 015011 (2021)

    ADS  Google Scholar 

  8. F. Yao, D.T. Pham, Y.H. Lee, Chemsuschem 8, 2284 (2015)

    Google Scholar 

  9. R. Wang, X. Li, Z. Nie, Y. Zhao, H. Wang, J. Energy Storage 38, 102479 (2021)

    Google Scholar 

  10. Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, Z. Liu, Mater. Des. 221, 111017 (2022)

    Google Scholar 

  11. J. Xu, X. Wang, X. Zhou, N. Yuan, S. Ge, J. Ding, Electrochim. Acta 301, 478 (2019)

    Google Scholar 

  12. C.H. Kim, J.H. Wee, Y.A. Kim, K.S. Yang, C.M. Yang, J. Mater. Chem. A 4, 4763 (2016)

    Google Scholar 

  13. M. S. Soffian, F. Z. Abdul Halim, F. Aziz, M. A. Rahman, M. A. Mohamed Amin, and D. N. Awang Chee, Environ. Adv. 9, 100259 (2022).

  14. A. Zekenova, M. Nazhipkyzy, W. Li, A. Kalybayeva, G. Zhumanova, and O. Zubova, Inorganics 10, (2022).

  15. P. Liu, Y. Li, Y.S. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A 4, 13046 (2016)

    Google Scholar 

  16. L. Chen, T. Ji, L. Mu, J. Zhu, Carbon N. Y. 111, 839 (2017)

    Google Scholar 

  17. S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Mater. Res. Express 5, 045601 (2018)

    ADS  Google Scholar 

  18. X.Y. Luo, Y. Chen, Y. Mo, Xinxing Tan Cailiao/New Carbon Mater. 36, 49 (2021)

    Google Scholar 

  19. K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K. Gupta, Sustain. 11, 141 (2019)

    Google Scholar 

  20. A. Adan-Mas, L. Alcaraz, P. Arévalo-Cid, F.A. López-Gómez, F. Montemor, Waste Manag. 120, 280 (2021)

    Google Scholar 

  21. J. Tu, Z. Qiao, Y. Wang, G. Li, X. Zhang, G. Li, D. Ruan, Int. J. Electrochem. Sci. 18, 16 (2023)

    Google Scholar 

  22. W. Zhang, B. Liu, M. Yang, Y. Liu, H. Li, P. Liu, J. Mater. Sci. Technol. 95, 105 (2021)

    Google Scholar 

  23. Y. Al Haj, S. Mousavihashemi, D. Robertson, M. Borghei, T. Pääkkönen, O.J. Rojas, E. Kontturi, T. Kallio, J. Vapaavuori, Chem. Eng. J. 435, 135058 (2022)

    Google Scholar 

  24. S. Chaudhary, R. Mohan, O.P. Sinha, Appl. Phys. A Mater. Sci. Process. 126, 3 (2020)

    Google Scholar 

  25. L.H. Zheng, M.H. Chen, S.X. Liang, Q.F. Lü, Diam. Relat. Mater. 113, 108267 (2021)

    ADS  Google Scholar 

  26. T.A. Centeno, F. Stoeckli, Electrochim. Acta 52, 560 (2006)

    Google Scholar 

  27. Z. Chen, H. Zhuo, Y. Hu, L. Zhong, X. Peng, S. Jing, Q. Liu, X. Zhang, C. Liu, R. Sun, A.C.S. Sustain, Chem. Eng. 6, 7138 (2018)

    Google Scholar 

  28. Z. Tan, J. Yang, Y. Liang, M. Zheng, H. Hu, H. Dong, Y. Liu, Y. Xiao, J. Colloid Interface Sci. 585, 778 (2021)

    ADS  Google Scholar 

  29. E. Taer, N. Yanti, R. Taslim, J. Mater. Res. Technol. 19, 4721 (2022)

    Google Scholar 

  30. A.H.D. Abdullah, S. Chalimah, I. Primadona, M.H.G. Hanantyo, IOP Conf. Ser. Earth Environ. Sci. 160, 012003 (2018)

    Google Scholar 

  31. B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Adv. Mater. 22, 813 (2010)

    Google Scholar 

  32. N. Sahu, A.K. Nayak, L. Verma, C. Bhan, J. Singh, P. Chaudhary, B.C. Yadav, J. Environ. Manag. 312, 114948 (2022)

    Google Scholar 

  33. Y. Wang, R. Yang, M. Li, Z. Zhao, Ind. Crops Prod. 65, 216 (2015)

    Google Scholar 

  34. S.C. Rodrigues, M.C. Silva, J.A. Torres, M.L. Bianchi, Water. Air. Soil Pollut. 231, 1 (2020)

    Google Scholar 

  35. X. Ma, M. Liu, L. Gan, Y. Zhao, L. Chen, J. Solid State Electrochem. 17, 2293 (2013)

    Google Scholar 

  36. W. Li, M. Chen, C. Wang, Mater. Lett. 65, 3368 (2011)

    Google Scholar 

  37. T.R. Penki, D. Shanmughasundaram, B. Kishore, N. Munichandraiah, Adv. Mater. Lett. 5, 184 (2014)

    Google Scholar 

  38. M.S. Islam, B.C. Ang, S. Gharehkhani, A.B.M. Afifi, Carbon Lett. 20, 1 (2016)

    Google Scholar 

  39. K. Bouhadjra, W. Lemlikchi, A. Ferhati, S. Mignard, Sci. Rep. 11, 1 (2021)

    Google Scholar 

  40. A.A. Awe, B.O. Opeolu, O.S. Fatoki, O.S. Ayanda, V.A. Jackson, R. Snyman, Appl. Biol. Chem. 63, 1 (2020)

    Google Scholar 

  41. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Colloids Surf. A Physicochem. Eng. Asp. 490, 74 (2016)

    Google Scholar 

  42. M.M. Mateus, P. Ventura, A. Rego, C. Mota, I. Castanheira, J.M. Bordado, R.G. dos Santos, BioResources 12, 1463 (2017)

    Google Scholar 

  43. J. Ren, N. Chen, L. Wan, G. Li, T. Chen, F. Yang, S. Sun, Molecules 26, 1 (2021)

    Google Scholar 

  44. M.A. El-Nemr, M. Yılmaz, S. Ragab, A. El Nemr, Biomass Convers. Biorefinery (2022). https://doi.org/10.1007/s13399-022-02378-4

    Article  Google Scholar 

  45. X. Qu, Y. Liu, C. Zhang, A. Zhu, T. Wang, Y. Tian, J. Yu, B. Xing, G. Huang, Y. Cao, J. Mater. Sci. Mater. Electron. 30, 7873 (2019). https://doi.org/10.1007/s10854-019-01107-4

    Article  Google Scholar 

  46. R. Heimböckel, F. Hoffmann, M. Fröba, Phys. Chem. Chem. Phys. 21, 3122 (2019)

    Google Scholar 

  47. S. Chaudhary, D. Kuntal, K.K. Althurthi Bharani Venkata, R.C. Veera Venkata, N. Goli, S. Thomas, ChemistrySelect 4, 8719 (2019)

    Google Scholar 

  48. X. Fu, L. Liu, Y. Yu, H. Lv, Y. Zhang, S. Hou, A. Chen, J. Taiwan Inst. Chem. Eng. 101, 244 (2019)

    Google Scholar 

  49. N. Cai, H. Cheng, H. Jin, H. Liu, P. Zhang, M. Wang, J. Electroanal. Chem. 861, 113933 (2020)

    Google Scholar 

  50. K. Zhang, M. Liu, T. Zhang, X. Min, Z. Wang, L. Chai, Y. Shi, J. Mater. Chem. A 7, 26838 (2019)

    Google Scholar 

  51. Z. Liu, J. Hu, F. Shen, D. Tian, M. Huang, J. He, J. Zou, L. Zhao, Y. Zeng, J. Power Sources 497, 229880 (2021)

    Google Scholar 

  52. D. Pertiwi, N. Yanti, R. Taslim, J. Phys. Conf. Ser. 2193, 012019 (2022)

    Google Scholar 

  53. N. Verma, B.C. Mukesh, K. Vivek, BioResources 6, 1505 (2011)

    Google Scholar 

  54. S.A.Z. Naqvi, A. Irfan, S. Zaheer, A. Sultan, S. Shajahan, S.L. Rubab, Q.U. Ain, R. Acevedo, Vegetos 34, 470 (2021)

    Google Scholar 

  55. J.M. Long, I.E. Widders, Plant Physiol. 94, 1040 (1990)

    Google Scholar 

  56. V. Novoseltseva, H. Yankovych, O. Kovalenko, M. Václavíková, I. Melnyk, Waste Manag. Res. 39, 584 (2021)

    Google Scholar 

  57. S. Supriya, G. Sriram, Z. Ngaini, C. Kavitha, M. Kurkuri, I.P. De Padova, G. Hegde, Waste Biomass Valoriz. 11, 3821 (2020)

    Google Scholar 

  58. J.P. Reddy, J.W. Rhim, J. Nat. Fibers 15, 465 (2018)

    Google Scholar 

  59. M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T. Prem Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, A.M. Stephan, Mater Chem. Phys. 115, 33 (2009)

    Google Scholar 

  60. H. Chen, Y.C. Guo, F. Wang, G. Wang, P.R. Qi, X.H. Guo, B. Dai, F. Yu, Xinxing Tan Cailiao/New Carbon Mater. 32, 592 (2017)

    Google Scholar 

  61. M. Song, Y. Zhou, X. Ren, J. Wan, Y. Du, G. Wu, F. Ma, J. Colloid Interface Sci. 535, 276 (2019)

    ADS  Google Scholar 

  62. M.M. Baig, I.H. Gul, Biomass Bioenerg. 144, 105909 (2021)

    Google Scholar 

  63. X. Cao, Z. Li, H. Chen, C. Zhang, Y. Zhang, C. Gu, X. Xu, Q. Li, Int. J. Hydrogen Energy 46, 18887 (2021)

    Google Scholar 

  64. D. Khalafallah, X. Quan, C. Ouyang, M. Zhi, Z. Hong, Renew. Energy 170, 60 (2021)

    Google Scholar 

  65. E. Taer, A. Apriwandi, D.R. Andani, R. Taslim, J. Mater. Res. Technol. 15, 1732 (2021)

    Google Scholar 

  66. S. Zhang, M. Zheng, Z. Lin, N. Li, Y. Liu, B. Zhao, H. Pang, J. Cao, P. He, Y. Shi, J. Mater. Chem. A 2, 15889 (2014)

    Google Scholar 

  67. M. Vijayakumar, R. Santhosh, J. Adduru, T.N. Rao, M. Karthik, Carbon N. Y. 140, 465 (2018)

    Google Scholar 

  68. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, J. Phys. Chem. C 122, 194 (2018)

    Google Scholar 

  69. I. Yang, S.G. Kim, S.H. Kwon, M.S. Kim, J.C. Jung, Electrochim. Acta 223, 21 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to IUAC for extending the FE-SEM facility funded by the Ministry of Earth Sciences (MoES) under the Geochronology project [MoES/P.O.(Seismic)8(09)-Geochron/2012]. We would like to acknowledge the DST-FIST project (SR/FST/PSI-160/2010) for the support of the XRD D2-phaser system at AINT, AUUP, Noida. We would also like to acknowledge Dr. Sanjay Dhakate from CSIR-National Physical Laboratory, New Delhi, India for helping us in BET measurements.

Funding

One of the authors, RS would like to acknowledge the UGC-DAE-CSR, Indore, MP, India [CSR-IC-ISUM-01/CSR-327/2021–2022/597] for the financial support for this research work.

Author information

Authors and Affiliations

Authors

Contributions

MS: Methodology, Investigation, Visualization, Data Analysis, Writing—original draft. RS: Experimental Investigation, Writing—review & editing. SC: Review & editing. Anit Dawar, SO: SEM Investigation. AV: EDX Investigation. Anurag Srivastava: Review & editing. OPS: Conceptualisation, Visualization, Writing—review & editing.

Corresponding author

Correspondence to Om Prakash Sinha.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheoran, M., Sharma, R., Chaudhary, S. et al. An economical green route synthesis of carbon spheres derived from kitchen biowastes for supercapacitor application. Appl. Phys. A 129, 549 (2023). https://doi.org/10.1007/s00339-023-06811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06811-x

Keywords

Navigation