Skip to main content
Log in

Improving the Electrical and Optical Properties of C40 Fullerene Using the Donor–Acceptor Groups

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, the C40 fullerene was selected as the source of the π electrons and the electron-donor–acceptor groups was used to improve the optical and electrical properties of it. For this purpose the fullerene C40 molecule was sandwiched between the electron donor and acceptor groups, and its electronic and optical properties was calculated. The –NHLi, –CH2Li and –NCH3Li groups were used as electron donor groups and the –CN, –NO and –BH2 groups as electron acceptor groups. It was demonstrated that in comparison to its pristine form, the calculated Eg for sandwiched form of fullerene C40 molecules is lower. For instance for the BH2-C40-NCH3Li compound, the bond gap is about 1.3 eV which suggests a greater electrical conductivity of this compound than other compounds. On the other hand the highest Eg value for the CN–C40–CH2Li nanocluster is the value of 1.51 eV (highest obtained Eg). The optical properties of pristine fullerene and fullerene functionalized with electron donor and acceptor groups were investigated which drastic effect of donor and acceptor groups on C40 fullerene was observed. The results of this research may be useful in designing new photosensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. W. Adamson, K. Kalyanasundaram, and M. Grätzel, Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds (Springer Science Business Media, Netherlands, 1993).

    Google Scholar 

  2. P. Zhang, M. Wang, C. Li, X. Li, J. Dong, and L. Sun (2010). Chem. Commun 46, 8806.

    Article  CAS  Google Scholar 

  3. M. G. Pfeffer, T. Kowacs, M. Wächtler, J. Guthmuller, B. Dietzek, J. G. Vos, and S. Rau (2015). Angew Chem 54, 6627.

    Article  CAS  Google Scholar 

  4. A. Ravve, Photosensitizers and photoinitiators, in A. Ravve (ed.), Light-Associated Reactions of Synthetic Polymers (Springer, New York, 2006).

    Google Scholar 

  5. W. Wu, D. Duo Mao, S. Xu, Kenry, F. Hu, X. Li, D. Kong, and B. Liu (2018) Chem 4:1937

  6. K. Whitehead and J. I. Hedges (2005). J. Photochem. Photobiol. B Bio 80, 115.

    Article  CAS  Google Scholar 

  7. P. W. Koh, M. H. M. Hatta, S. T. Ong, L. Yuliati, and S. L. Lee (2017). Photochem. Photobiol. B Bio. 332, 215.

    Article  CAS  Google Scholar 

  8. S. Rühle, M. Shalom, and A. Zaban (2010). Chem. Phys. Chem. 11, 2290.

    Article  Google Scholar 

  9. Z. Huizhi, L. Wu, Y. Gao, and T. Ma (2011). J. Photochem. Photobiol. A Chem. 219, 188.

    Article  Google Scholar 

  10. E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, and O. Kurita (2007). J. Sol. Energy 81, 512.

    Article  CAS  Google Scholar 

  11. A. O. Boyo, M. B. O. Shitta, T. Oluwa, and S. Adeola (2012). Trends Appl. Sci. Res. 7, 558.

    Article  Google Scholar 

  12. T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, and T. Nagano (2005). J. Am. Chem. Soc. 127, 12162.

    Article  CAS  Google Scholar 

  13. E. A. Lissi, M. V. Encinas, E. Lemp, and M. A. Rubio (1993). Chem. Rev. 93, 699.

    Article  CAS  Google Scholar 

  14. J. Kou, D. Dou, and L. Yang (2017). Oncotarget 8, 81591.

    Article  Google Scholar 

  15. H. Abrahamse and M. R. Hamblin (2016). Biochem. J. 473, 347.

    Article  CAS  Google Scholar 

  16. S. Ekrami and H. R. Shamlouei (2018). Chem. Phys. Lett. 709, 26.

    Article  CAS  Google Scholar 

  17. S. M. Atyabi, H. R. Shamlouei, and G. Mohseni Roozbahani (2020). Asgari E 43, 72.

    CAS  Google Scholar 

  18. P. Harris (2004). Philos. Magn. 84, 3159.

    Article  CAS  Google Scholar 

  19. R. F. Curl and R. E. Smalley (1988). Science 242, 1017.

    Article  CAS  Google Scholar 

  20. D. Vincent and J. Cruickshank (1997). Appl. Opt. 36, 7794.

    Article  CAS  Google Scholar 

  21. D. K. Palit, A. V. Sapre, J. P. Mittal, and C. N. R. Rao (1992). Chem. Phys. Lett. 195, 1.

    Article  CAS  Google Scholar 

  22. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, F. N. Diederich, R. L. Whetten, Y. Rubin, M. M. Alvarez, and S. J. Anz (1991). J. Phys. Chem 95, 11.

    Article  CAS  Google Scholar 

  23. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Gaussian, Inc., Wallingford, CT (2009)

  24. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, 839.

    Article  Google Scholar 

  25. M. J. G. Peach, T. Helgaker, P. Saiek, T. W. Keal, O. B. Lutnas, D. J. Tozer, and N. C. Handy (2006). Phys. Chem. Chem. Phys 8, 558.

    Article  CAS  Google Scholar 

  26. A. D. Buckingham (1967). Adv. Chem. Phys. 12, 107.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi Kashkooli, A., Ghaedi, A. & Shamlouei, H.R. Improving the Electrical and Optical Properties of C40 Fullerene Using the Donor–Acceptor Groups. J Clust Sci 33, 2673–2679 (2022). https://doi.org/10.1007/s10876-021-02184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02184-4

Keywords

Navigation