Skip to main content
Log in

Influence of donor–acceptor groups on the electrical and optical properties of C50 fullerene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this research, the C50 fullerene was employed as the source of the π electrons and the electron donor–acceptor groups were used to enhance its optical properties. Considerable enhancement in its electronic and optical property of C50 as the result of donor and acceptor group presence was observed. For instance, in UV–Visible absorption spectrum, the number of absorption lines significantly increase which may be the relaxation of the electronic transition selection rules. Considerably, the substituted forms of C50, have numbers of absorption bands in near infrared region. The BH2–C50-NCH3Li and NO–C50-NCH3Li molecules have superior improvement in optical properties. Finally, the donor and acceptor groups influence on non-linear optical properties (NLO) of C50 was explored and the considerable improvement in NLO properties of C50 was observed in which the NLO improvements for BH2-C50-NCH3Li and NO-C50-CH2Li cases is higher than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamson AW, Kalyanasundaram K, Grätzel M (1993) Photosensitization and photocatalysis using inorganic and organometallic compounds. SPRINGER SCIENCE BUSINESS MEDIA, Netherlands

    Google Scholar 

  2. Zhang P, Wang M, Li C, Li X, Dong J, Sun L (2010) Chem Commun 46:8806

    Article  CAS  Google Scholar 

  3. Pfeffer MG, Kowacs T, Wächtler M, Guthmuller J, Dietzek B, Vos JG, Rau S (2015) Angew Chem 54:6627

    Article  CAS  Google Scholar 

  4. Ravve A (2006) Photosensitizers and Photoinitiators. In: Light-Associated Reactions of Synthetic Polymers. Springer, New York

  5. Wu W, Duo Mao D, Xu S, Kenry Hu F, Li X, Kong D, Liu B (2018) Chem 4:1937

    Article  CAS  Google Scholar 

  6. Whitehead K, Hedges JI (2005) J Photochem Photobiol B Bio 80:115

    Article  CAS  Google Scholar 

  7. Koh PW, Hatta MHM, Ong ST, Yuliati L, Lee SL (2017) Photochem Photobiol B Bio 332:215

    Article  CAS  Google Scholar 

  8. Rühle S, Shalom M, Zaban A (2010) Chem Phys Chem 11:2290

    Article  Google Scholar 

  9. Huizhi Z, Wu L, Gao Y, Ma T (2011) J Photochem Photobiol A Chem 219:188

    Article  Google Scholar 

  10. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O (2007) J Sol Energy 81:512

    Article  CAS  Google Scholar 

  11. Boyo AO, Shitta MBO, Oluwa T, Adeola S (2012) Trends Appl Sci Res 7:558

    Article  Google Scholar 

  12. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T (2005) J Am Chem Soc 127:12162

    Article  CAS  Google Scholar 

  13. Lissi EA, Encinas MV, Lemp E, Rubio MA (1993) Chem Rev 93:699

    Article  CAS  Google Scholar 

  14. Kou J, Dou D, Yang L (2017) Oncotarget 8:81591

    Article  Google Scholar 

  15. Abrahamse H, Hamblin MR (2016) Biochem J 473:347

    Article  CAS  Google Scholar 

  16. Buckingham AD (1967) Adv Chem Phys 12:107

    CAS  Google Scholar 

  17. Ekrami S, Shamlouei HR (2018) Chem Phys Lett 709:26

    Article  CAS  Google Scholar 

  18. Atyabi SM, Shamlouei HR, Mohseni Roozbahani G, Asgari E (2020) Bull Mater Sci 43:72

  19. Dana P, Shamlouei HR, Maleki A, Shirvan SA (2021) J Chin Chem Soc 68:959

  20. Hamidi A, Shamlouei HR, Maleki A, Mombeini Goodajdar B (2020) J Mol Model 26:348

    Article  CAS  Google Scholar 

  21. Harris P (2004) Philos Mag 84:3159

    Article  CAS  Google Scholar 

  22. Curl RF, Smalley RE (1988) Science 242:1017

    Article  CAS  Google Scholar 

  23. Vincent D, Cruickshank J (1997) Appl Opt 36:7794

    Article  CAS  Google Scholar 

  24. Palit DK, Sapre AV, Mittal JP, Rao CNR (1992) Chem Phys Lett 195:1

    Article  CAS  Google Scholar 

  25. Arbogast JW, Darmanyan AP, Foote CS, Diederich FN, Whetten RL, Rubin Y, Alvarez MM, Anz SJ (1991) J Phys Chem 95:11

    Article  CAS  Google Scholar 

  26. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian, Inc., Wallingford

  27. O'boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  CAS  Google Scholar 

  28. Peach MJG, Helgaker T, Saiek P, Keal TW, Lutnas OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubikaskooli, A., Ghaedi, A.M., Shamlouei, H.R. et al. Influence of donor–acceptor groups on the electrical and optical properties of C50 fullerene. J Mol Model 28, 7 (2022). https://doi.org/10.1007/s00894-021-05001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05001-x

Keywords

Navigation