Skip to main content
Log in

Side chain functionalization of conjugated polymer on the modulation of photovoltaic properties of fullerene and non-fullerene organic solar cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report a series of π-conjugated polymers (P1-F, P2-Cl, and P3-OMe) with three different functional groups (fluorine, chlorine, and methoxy) on their conjugated side chains. Although all three polymers showed identical photophysical properties by varying the functional group, they showed a notable difference in their dipole moment difference between the ground and excited state (Δµge) values. Furthermore, photovoltaic properties of fullerene organic solar cells (FOSCs)/non-fullerene organic solar cells (NFOSCs) were significantly affected concerning the functional group in the π-conjugated polymer. Interestingly, halogen-substituted polymers (P1-F and P2-Cl) showed an enhanced PCE than methoxy-substituted polymer (P3-OMe) in both NFOSCs and FOSCs. Also, the FOSCs were much affected upon functional group modulation than did in NFOSCs. The difference in the photovoltaic properties of P1-F, P2-Cl and P3-OMe based OSCs was further analyzed by atomic force microscopy, space charge limited current method, water contact angle and transient photoluminescence measurements. Overall, our work sheds light on the importance of side chain functional group modulation of donor polymers for efficient F and NFOSCs.

Graphical Abstract

We report a series of π-conjugated polymers (P1-F, P2-Cl, and P3-OMe) with three different functional groups (fluorine, chlorine, and methoxy) on their conjugated side chains. Although all three polymers showed identical photophysical properties by varying the functional group, they showed a notable difference in their dipole moment difference between the ground and excited state (Δµge) values and photovoltaic properties (fullerene and non-fullerene organic solar cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Chem. Rev. 116, 7379–7457 (2016)

    Article  Google Scholar 

  2. G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 118, 3447–3507 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. S. Li, C.-Z. Li, M. Shi, H. Chen, ACS Energy Lett. 5, 1554–1567 (2020)

    Article  CAS  Google Scholar 

  4. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Chem. Rev. 115, 12666–12731 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.-Y. Jen, S.R. Marder, X. Zhan, Nat. Rev. Mater. 3, 18003 (2018)

    Article  CAS  Google Scholar 

  6. P. Meredith, W. Li, A. Armin, Adv. Energy Mater. 10, 2001788 (2020)

    Article  CAS  Google Scholar 

  7. H. Yao, J. Hou, Angew. Chem. Int. Ed. 61, e202209021 (2022)

    Article  CAS  Google Scholar 

  8. Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 33, 2102420 (2021)

    Article  CAS  Google Scholar 

  9. H. Fu, Z. Wang, Y. Sun, Angew. Chem. Int. Ed. 58, 4442–4453 (2019)

    Article  CAS  Google Scholar 

  10. L.-W. Feng, J. Chen, S. Mukherjee, V.K. Sangwan, W. Huang, Y. Chen, D. Zheng, J.W. Strzalka, G. Wang, M.C. Hersam, D. DeLongchamp, A. Facchetti, T.J. Marks, ACS Energy Lett. 5, 1780–1787 (2020)

    Article  CAS  Google Scholar 

  11. B. Zheng, L. Huo, Y. Li, NPG Asia Mater 3, 12 (2020)

    Google Scholar 

  12. S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, J. Hou, J. Am. Chem. Soc. 140, 7159–7167 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. K. He, P. Kumar, Y. Yuan, Y. Li, Mater. Adv. 2, 115–145 (2021)

    Article  CAS  Google Scholar 

  14. K. Kranthiraja, A. Saeki, A.C.S. Appl, Mater. Interfaces 14, 28936–28944 (2022)

    Article  CAS  Google Scholar 

  15. X. Xu, K. Feng, Z. Bi, W. Ma, G. Zhang, Q. Peng, Adv. Mater. 31, 1901872 (2019)

    Article  Google Scholar 

  16. B. Fan, M. Li, D. Zhang, W. Zhong, L. Ying, Z. Zeng, K. An, Z. Huang, L. Shi, G.C. Bazan, F. Huang, Y. Cao, ACS Energy Lett. 5, 2087–2094 (2020)

    Article  CAS  Google Scholar 

  17. Z. Zheng, H. Yao, L. Ye, Y. Xu, S. Zhang, J. Hou, Mater. Today 35, 115–130 (2020)

    Article  CAS  Google Scholar 

  18. S. Li, W. Zhao, J. Zhang, X. Liu, Z. Zheng, C. He, B. Xu, Z. Wei, J. Hou, Chem. Mater. 32, 1993–2003 (2020)

    Article  CAS  Google Scholar 

  19. N. Nakao, S. Ogawa, H.D. Kim, H. Ohkita, T. Mikie, M. Saito, I. Osaka, A.C.S. Appl, Mater. Interfaces 13, 56420–56429 (2021)

    Article  CAS  Google Scholar 

  20. T. Jia, J. Zhang, K. Zhang, H. Tang, S. Dong, C.-H. Tan, X. Wang, F. Huang, J. Mater. Chem. A 9, 8975–8983 (2021)

    Article  CAS  Google Scholar 

  21. J.J. Rech, L. Yan, Z. Wang, Q. Zhang, S. Bradshaw, H. Ade, W. You, A.C.S. Appl, Polym. Mater. 3, 30–41 (2021)

    CAS  Google Scholar 

  22. C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z.-G. Zhang, Y. Li, Nat Commun. 9, 743 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 65, 272 (2020)

    Article  CAS  Google Scholar 

  24. N. Nakao, M. Saito, T. Mikie, T. Ishikawa, J. Jeon, H.D. Kim, H. Ohkita, A. Saeki, I. Osaka, Adv. Sci. 10, 2205682 (2023). https://doi.org/10.1002/advs.202205682

    Article  CAS  Google Scholar 

  25. L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R.C.I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 21, 656–663 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Tang, H. Sun, Z. Wu, Y. Zhang, G. Zhang, M. Su, X. Zhou, X. Wu, W. Sun, X. Zhang, B. Liu, W. Chen, Q. Liao, H.Y. Woo, X. Guo, Adv. Sci. 6, 1901773 (2019)

    Article  CAS  Google Scholar 

  27. Q. Zhang, M.A. Kelly, N. Bauer, W. You, Acc Chem. Res. 50, 2401–2409 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. F. Meyer, Prog. Polym. Sci. 47, 70–91 (2015)

    Article  CAS  Google Scholar 

  29. L. Lu, L. Yu, Adv. Mater. 26, 4413–4430 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 131, 7792–7799 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. K. Kranthiraja, K. Gunasekar, H. Kim, A.-N. Cho, N.-G. Park, S. Kim, B.J. Kim, R. Nishikubo, A. Saeki, M. Song, S.-H. Jin, Adv. Mater. 29, 1700183 (2017)

    Article  Google Scholar 

  32. K. Kranthiraja, S. Kim, C. Lee, K. Gunasekar, V.G. Sree, B. Gautam, K. Gundogdu, S.-H. Jin, B.J. Kim, Adv. Funct. Mater. 27, 1701256 (2017)

    Article  Google Scholar 

  33. K. Kranthiraja, D.X. Long, V.G. Sree, W. Cho, Y.-R. Cho, A. Zaheer, J.-C. Lee, Y.-Y. Noh, S.-H. Jin, Macromolecules 51, 5530–5536 (2018)

    Article  CAS  Google Scholar 

  34. T. Xu, L. Lu, T. Zheng, J.M. Szarko, A. Schneider, L.X. Chen, L. Yu, Adv. Funct. Mater. 24, 3432–3437 (2014)

    Article  CAS  Google Scholar 

  35. X. Liao, Y. Cui, X. Shi, Z. Yao, H. Zhao, Y. An, P. Zhu, Y. Guo, X. Fei, L. Zuo, K. Gao, F. Lin, Q. Xie, L. Chen, W. Ma, Y. Chen, A.K.-Y. Jen, Mater. Chem. Front. 4, 1507–1518 (2020)

    Article  CAS  Google Scholar 

  36. M. Li, Y. Zhou, J. Zhang, J. Song, Z. Bo, J. Mater. Chem. A 7, 8889–8896 (2019)

    Article  CAS  Google Scholar 

  37. C.F.N. Marchiori, M. Koehler, J. Phys. D: Appl. Phys. 47, 215104 (2014)

    Article  Google Scholar 

  38. S. Honda, H. Ohkita, H. Benten, S. Ito, Adv. Energy Mater. 1, 588–598 (2011)

    Article  CAS  Google Scholar 

  39. H. Wang, L. Yang, P.-C. Lin, C.-C. Chueh, X. Liu, S. Qu, S. Guang, J. Yu, W.A. Tang, Small 17, 2007746 (2021)

    Article  CAS  Google Scholar 

  40. F. Du, H. Wang, Z. Zhang, L. Yang, J. Cao, J. Yu, W. Tang, Mater. Horiz. 8, 1008–1016 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. K. Kranthiraja, A. Saeki, ACS Appl. Polym. Mater. 3, 2759–2767 (2021)

    Article  CAS  Google Scholar 

  42. D. Chen, S. Liu, J. Liu, J. Han, L. Chen, Y. Chen, A.C.S. Appl, Polym. Mater. 3, 1923–1931 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF-2018R1A5A1025594 and 2022R1A2C2091150) by the Ministry of Science, ICT of Korea.

Author information

Authors and Affiliations

Authors

Contributions

KK, UKA: conceptualization, methodology, formal analysis, writing—original draft. HK, JL: formal analysis, data curation. SSR, RDG, TG: formal analysis, data curation, writing—original draft. S-HJ: writing—review & editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Sung-Ho Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. I declare that the above items are certain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12098 KB)

Supporting information

Supporting information

Monomer and polymer synthesis, materials and instruments, device fabrication, device measurement and characterization, schemes S1 and S2; 1H and 13C NMR of monomers (Figure S1 and S2); 1H NMR of P1-F, P2-Cl and P3-OMe (Figure S3-S5); CV and TGA of P1-F, P2-Cl and P3-OMe (Figure S6); Normalized absorption spectra of P1-F, P2-Cl and P3-OMe in chlorobenzene and film (Figure S7); DFT simulated HOMO and LUMO of P1-F, P2-Cl and P3-OMe repeating unit (Figure S8); SCLC curves of hole-only only devices of F and NFOSCs (Figure S9); Pictures of CA measurements using water and glycerol (Figure S10); PCE vs absolute difference between the donor and acceptor materials; PCE vs χ (Figure S11); Summary of ground state dipole moment; excited state dipole moment; dipole moment difference between the ground and excited state of polymers (Table S1), SCLC hole mobility of optimized NFOSCs and FOSCs (Table S2); Transient lifetime values of the pristine polymers and their optimized blends. (Table S3); contact angle and surface free energy of donor polymers and acceptor materials (Table S4); Flory-Huggins interaction parameter (χ) obtained from the SFE (Table S5).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kranthiraja, K., Kim, H., Lee, J. et al. Side chain functionalization of conjugated polymer on the modulation of photovoltaic properties of fullerene and non-fullerene organic solar cells. Macromol. Res. 31, 897–905 (2023). https://doi.org/10.1007/s13233-023-00176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00176-z

Keywords

Navigation