Skip to main content

Advertisement

Log in

Phytogenic Titanium Dioxide (TiO2) Nanoparticles Derived from Rosa davurica with Anti-bacterial and Anti-biofilm Activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work reports the synthesis, antibacterial and anti-biofilm activities of titanium dioxide nanoparticles (RDL-TiO2NPs) from Rosa davurica leaf extract. The RDL-TiO2NPs were characterized using TEM-EDS, FTIR, DLS, and XRD analysis. The characterization results indicated that RDL-TiO2NPs were anatase particle-sized 146 ± 3 nm with a surface charge of − 23.53 ± 1.36 mV. The MIC, MBC, and IC50 of RDL-TiO2NPs were significantly varied among the targeted bacterial pathogens (p < 0.05). The MIC of RDL-TiO2 NPs were exhibited 15.62 μg/mL for S. aureus and B. cereus, 31.25 μg/mL for E. coli and 62.5 μg/mL for S. enterica. The MBC were found to be 125 μg/mL for S. aureus and B. cereus while 250 μg/mL for E. coli and S. enterica. The IC50 was exhibited higher (158.75 μg/mL) for S. enterica and lower (76.84 μg/mL) for S. aureus. Further, the TEM and crystal violet staining assays revealed that RDL-TiO2NPs inhibited bacterial biofilm by damaging the cell wall membrane. Overall, this work indicated that RDL-TiO2NPs is a promising antibacterial agent deserves further molecular elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12 (7), 908–931.

    Article  CAS  Google Scholar 

  2. M. P. Patil and G. D. Kim (2017). Appl. Microbiol. Biotechnol. 101 (1), 79–92.

    Article  CAS  Google Scholar 

  3. V. Tiwari, N. Mishra, K. Gadani, P. S. Solanki, N. A. Shah, and M. Tiwari (2018). Front. Microbiol. 9, 1218.

    Article  Google Scholar 

  4. R. H. Ahmed and D. E. Mustafa (2019). Int. Nano Lett. 10 (1), 1–14.

    Article  Google Scholar 

  5. F. Farhadi, B. Khameneh, M. Iranshahi, and M. Iranshahy (2019). Phytother. Res. 33 (1), 13–40.

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y.-T. Wu, W. Zheng, X.-X. Han, Y.-H. Jiang, P.-L. Hu, Z.-X. Tang, and L.-E. Shi (2017). J. Funct. Foods 38, 273–279.

    Article  CAS  Google Scholar 

  7. F. Baghbani-Arani, R. Movagharnia, A. Sharifian, S. Salehi, and S. A. S. Shandiz (2017). J. Photochem. Photobiol. B: Biol. 173, 640–649.

    Article  CAS  Google Scholar 

  8. M. A. Awad, N. E. Eisa, P. Virk, A. A. Hendi, K. M. O. O. Ortashi, A. S. A. Mahgoub, M. A. Elobeid, and F. Z. Eissa (2019). Mater. Lett. 256.

  9. M. Srinivasan, M. Venkatesan, V. Arumugam, G. Natesan, N. Saravanan, S. Murugesan, S. Ramachandran, R. Ayyasamy, and A. Pugazhendhi (2019). Process Biochem. 80, 197–202.

    Article  CAS  Google Scholar 

  10. S. Subhapriya and P. Gomathipriya (2018). Microb. Pathog. 116, 215–220.

    Article  CAS  Google Scholar 

  11. M. Zimbone, M. A. Buccheri, G. Cacciato, R. Sanz, G. Rappazzo, S. Boninelli, R. Reitano, L. Romano, V. Privitera, and M. G. Grimaldi (2015). Appl. Catal. B: Environ. 165, 487–494.

    Article  CAS  Google Scholar 

  12. P. J. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, and D. Y. Shih (2015). J. Food Drug Anal. 23 (3), 587–594.

    Article  CAS  Google Scholar 

  13. S. P. Goutam, G. Saxena, V. Singh, A. K. Yadav, R. N. Bharagava, and K. B. Thapa (2018). Chem. Eng. J. 336, 386–396.

    Article  CAS  Google Scholar 

  14. P. Maheswari, S. Harish, M. Navaneethan, C. Muthamizhchelvan, S. Ponnusamy, and Y. Hayakawa (2020). Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110457.

    Article  CAS  Google Scholar 

  15. G. D. Venkatasubbu, R. Baskar, T. Anusuya, C. A. Seshan, and R. Chelliah (2016). Colloids Surf. B Biointerfaces 148, 600–606.

    Article  CAS  Google Scholar 

  16. H. Tong, G. Jiang, X. Guan, H. Wu, K. Song, K. Cheng, and X. Sun (2016). Int. J. Biol. Macromol. 89, 111–117.

    Article  CAS  Google Scholar 

  17. H. J. Jung, J. H. Sa, Y. S. Song, T. H. Shim, E. H. Park, and C. J. Lim (2011). Immunopharmacol. Immunotoxicol. 33 (1), 186–192.

    Article  Google Scholar 

  18. D. H. Hwang, D. Y. Lee, P. O. Koh, H. R. Yang, C. Kang, and E. Kim (2020). Int. J. Mol. Sci. 21 (5).

  19. R. D. Abdi, and O. Kerro Dego (2019). Eur. J. Integr. Med. 29.

  20. W. J. Hickey, A. R. Shetty, R. J. Massey, D. B. Toso, and J. Austin Ii (2017). J. Microsc.-Oxf. 265 (1), 3–10.

    Article  CAS  Google Scholar 

  21. A. G. Al-Bakri, and N. N. Mahmoud (2019). Molecules 24(14).

  22. S. K. Shukla, and T. S. Rao (2017). bioRxiv.

  23. J. Kang, W. Jin, J. Wang, Y. Sun, X. Wu, and L. Liu (2019). Lwt 101, 639–645.

    Article  CAS  Google Scholar 

  24. K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2015). Appl. Nanosci. 6 (3), 399–408.

    Article  Google Scholar 

  25. N. Lagopati, E. P. Tsilibary, P. Falaras, P. Papazafiri, E. A. Pavlatou, E. Kotsopoulou, and P. Kitsiou (2014). Int. J. Nanomed. 9, 3219–3230.

    CAS  Google Scholar 

  26. T. Yadav, A. A. Mungray, and A. K. Mungray (2015). RSC Adv. 5 (79), 421–64432.

    Article  Google Scholar 

  27. S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, and S. Seraphin (2008). Optoelectron. Adv. Mater. Rapid Commun. 2 (3), 161–165.

  28. M. Hussain, R. Ceccarelli, D. L. Marchisio, D. Fino, N. Russo, and F. Geobaldo (2010). Chem. Eng. J. 157 (1), 45–51.

    Article  CAS  Google Scholar 

  29. G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, A. A. Zahir, and K. Velayutham (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 91, 23–29.

    Article  CAS  Google Scholar 

  30. G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, A. A. Zahir, and K. Velayutham (2012). Fungus-mediated biosynthesis and characterization of TiO(2) nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 91, 23–29.

    Article  CAS  Google Scholar 

  31. T. Santhoshkumar, A. A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A. V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, and S.-K. Kim (2014). Asian Pac. J Trop. Med. 7 (12), 968–976.

    Article  CAS  Google Scholar 

  32. J. L. del Pozo and R. Patel (2007). Clin. Pharmacol. Ther. 82 (2), 204–209.

    Article  Google Scholar 

  33. S. M. Santhosh and K. Natarajan (2015). Coatings 5 (2), 95–114.

    Article  CAS  Google Scholar 

  34. A. A. Mohamed, M. Abu-Elghait, N. E. Ahmed, and S. S. Salem (2020). Biol. Trace Elem. Res.

Download references

Acknowledgements

This work was supported by the Yangzhou University International academic exchange fund (YZUIAEF201901020) and Jiangsu Province Graduate Practice Innovation Project (SJCX19_0892), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Li, B., Saravanakumar, K. et al. Phytogenic Titanium Dioxide (TiO2) Nanoparticles Derived from Rosa davurica with Anti-bacterial and Anti-biofilm Activities. J Clust Sci 33, 1435–1443 (2022). https://doi.org/10.1007/s10876-021-02024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02024-5

Keywords

Navigation