Skip to main content
Log in

Synthesis of WSe2 Nanorods by Selenium Powder Precursor for Photocatalytic Application and Fuel Additive

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

By reducing the size of semiconductor material up to nanoscale, the physical and chemical properties vary substantially, resulting in unique features due to their large surface area or the quantum size. Tungsten selenide (WSe2) nano semiconductor is synthesized by a solvothermal method using sodium tungstate and selenium powder as a precursor, PVP as a stabilizing agent, and urea as a precipitating agent. Structural information of material is elucidated by XRD, such as grain size and crystal orientation. Diffraction peaks are observed at 13.69°, 31.45°, 37.93°, 41.27°, 47.53°, 55.47°, 55.95° and 65.17° 2θ values which designate the (002), (100), (103), (006), (105), (110), (112) and (200), miller indices respectively. The XRD result shows that the structure of semiconducting nanoparticles is hexagonal in shape and purely crystalline. The SEM determined surface topography and morphology of material that particles are rod-like, and the average particle size of nanorods is 41 nm. By Fuel additive application, it is clear that WSe2 nano semiconductor dramatically affects the fuel’s properties and different parameters analyze its efficiency, i.e., fire and flash point, cloud and pour point, kinematic viscosity, specific gravity and calorific values. The previous research has shown that semiconducting nanoparticles are essential in degrading dyes from water. At nanoscale, WSe2 nano semiconductor has recently been developed as an efficient photocatalyst because of its attractive band gap estimated as 1.8609 eV. WSe2 is an excellent catalyst because that Kapp values increase linearly from 0.0023 to 0.0037 min−1 with increase in catalyst dose from 0.01 to 0.05 g. In addition, it behaves as a good additive because the calorific value increased from 10,263 to 31,930 Jg−1 by the increase in additive dose from 20 to 80 ppm.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Colombo, C. Minussi, S. Orthmann, S. Staufenbiel, and R. Bodmeier (2018). Eur. J. Pharm. Biopharm. 125, 159.

    PubMed  CAS  Google Scholar 

  2. A. A. Kokorina, E. S. Prikhozhdenko, N. V. Tarakina, A. V. Sapelkin, G. B. Sukhorukov, and I. Y. Goryacheva (2018). Carbon. 127, 541.

    CAS  Google Scholar 

  3. V. Barreneche, R. Mondragon, D. Ventura-Espinosa, J. Mata, L. F. Cabeza, A. I. Fernández, and J. E. Julia (2018). Appl. Therm. Eng. 128, 121.

    CAS  Google Scholar 

  4. A. Bruix, J. V. Lauritsen, and B. Hammer (2018). Preprint at arXiv. 1805, 01244.

    Google Scholar 

  5. R. Vijayan, S. Joseph, and B. Mathew (2018). Artif. Cells. Nanomed. Biotechnol. 46, 861.

    PubMed  CAS  Google Scholar 

  6. S. R. Khan, S. Ali, G. Zahra, S. Jamil, and M. R. S. A. Janjua (2020). Chem. Phys. Lett. 12, 137804.

    Google Scholar 

  7. M. R. S. A. Janjua (2019). Open. Chem. 17, (1), 865.

    CAS  Google Scholar 

  8. S. Jamil, A. R. Alvi, S. R. Khan, and M. R. S. A. Janjua (2019). Prog. Chem. 31, 394.

    Google Scholar 

  9. G.A. Mansoori, in Nanoscience and Plant–Soil Systems, ed. by M. Ghorbanpour, K. Manika, and A. Varma (Springer, cham, 2017), p. 3.

  10. P. Livan and T. Öztürk (2018). J. Mater. Sci. 53, 14350.

    CAS  Google Scholar 

  11. C. Lee, S. K. Kim, J. H. Choi, H. Chang, and H. D. Jang (2018). J. Alloys Compd. 735, 2030.

    CAS  Google Scholar 

  12. K. Wu, B. Yang, X. Zhu, W. Chen, X. Luo, Z. Liu, X. Zhang, and Q. Liu (2018). New J. Chem. 42, 18749.

    CAS  Google Scholar 

  13. K. Klauke, D. H. Zaitsau, M. Bülow, L. He, M. Klopotowski, T. O. Knedel, J. Barthel, C. Held, S. P. Verevkin, and C. Janiak (2018). Dalton Trans. 47, 5083.

    PubMed  CAS  Google Scholar 

  14. T. Wang, X. Chen, G. Q. Lu, and G. Y. Lei (2007). J. Electron. Mater. 36, 1333.

    CAS  Google Scholar 

  15. S. Liu, M. Li, C. Wang, P. Jiang, L. Hu, and Q. Chen (2018). ACS Sustain. Chem. Eng. 6, 9137.

    CAS  Google Scholar 

  16. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber (2017). Nano lett. 17, 1455.

    PubMed  CAS  Google Scholar 

  17. P. C. Sherrell, K. Sharda, C. Grotta, J. Ranalli, M. S. Sokolikova, F. M. Pesci, P. Palczynski, V. L. Bemmer, and C. Mattevi (2018). ACS Omega. 3, 8655.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. E. V. Calman, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, and A. K. Geim (2018). Nat. Comun. 9, 1.

    CAS  Google Scholar 

  19. G. Rehman, S. A. Khan, B. Amin, I. Ahmad, L. Y. Gan, and M. Maqbool (2018). J. Mater. Chem. C. 6, 2830.

    CAS  Google Scholar 

  20. S. Lepeshov, A. Krasnok, and A. Alu (2019). Nanotechnology. 30, 254004.

    PubMed  CAS  Google Scholar 

  21. D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne (2018). Adv. Mater. 30, 1703912.

    Google Scholar 

  22. J.N. Milton, Optical studies of functionalized graphene and similar 2D materials (Published by university of exeter, 2017), http://hdl.handle.net/10871/32641. Accessed 11 Sep 2017.

  23. G. Barik and S. Pal (2018). J. Phys. Chem. C. 122, 25837.

    CAS  Google Scholar 

  24. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano (2012). Nat. Nanotechnol. 7, 699.

    PubMed  CAS  Google Scholar 

  25. R. Browning, N. Kuperman, R. Solanki, V. Kanzyuba, and S. Rouvimov (2016). Semicond. Sci. Technol. 31, 095002.

    Google Scholar 

  26. M. Jarosz, V. Porter, B. Fisher, M. Kastner, and M. Bawendi (2004). Phys. Rev. B. 70, 195327.

    Google Scholar 

  27. Y. Wei, J. Yang, A. W. Lin, and J. Y. Ying (2010). Chem. Mater. 22, 5672.

    CAS  Google Scholar 

  28. D. Mei, W. Yin, K. Feng, Z. Lin, L. Bai, J. Yao, and Y. Wu (2011). Inorg. Chem. 51, 1035.

    PubMed  Google Scholar 

  29. H.R. El-Ramady, E. Domokos-Szabolcsy, T.A. Shalaby, J. Prokisch, and M. Fári (2015). Springer, cham. 1, 153.

  30. J. Lu, Y. Xie, F. Xu, and L. Zhu (2002). J. Mater. Chem. 12, 2755.

    CAS  Google Scholar 

  31. A. Pospischil, M. M. Furchi, and T. Mueller (2014). Nat. Nanotechnol. 9, 257.

    PubMed  CAS  Google Scholar 

  32. F. Chen, J. Wang, B. Li, C. Yao, H. Bao, and Y. Shi (2014). Mater. Lett. 136, 191.

    CAS  Google Scholar 

  33. Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang (2016). Adv. Mater. 28, 1917.

    PubMed  CAS  Google Scholar 

  34. H. L. Zhuang and R. G. Hennig (2013). J. Phys. Chem. C. 117, 20440.

    CAS  Google Scholar 

  35. K. Kalantar-zadeh, J. Z. Ou, T. Daeneke, M. S. Strano, M. Pumera, and S. L. Gras (2015). Adv. Funct. Mater. 25, 5086.

    CAS  Google Scholar 

  36. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas (2015). Nat. Nanotechnol. 10, 507.

    PubMed  CAS  Google Scholar 

  37. R. Yuvasravan, G. Apsana, P. George, I. Genish, Y. Koltypin, and A. Gedanken (2016). Appl. Nanosci. 6, 855.

    CAS  Google Scholar 

  38. D. A. Henckel, O. Lenz, and B. M. Cossairt (2017). ACS Catal. 7, 2815.

    CAS  Google Scholar 

  39. R. Browning, P. Plachinda, and R. Solanki (2018). Semicond. Sci. Technol. 33, 105005.

    Google Scholar 

  40. S. Singh, S. K. Gupta, Y. Sonvane, and P. Gajjar (2018). Phys. Lett. A. 382, 2978.

    CAS  Google Scholar 

  41. B. Q. Zhang, L. S. Chen, H. L. Niu, C. J. Mao, and J. M. Song (2018). Nanoscale. 10, 20266.

    PubMed  CAS  Google Scholar 

  42. D. A. Henckel, O. M. Lenz, K. M. Krishnan, and B. M. Cossairt (2018). Nano Lett. 18, 2329.

    PubMed  CAS  Google Scholar 

  43. Y. Lee, H. Jeong, Y. S. Park, S. Han, J. Noh, and J. S. Lee (2018). Appl. Surf. Sci. 432, 170.

    CAS  Google Scholar 

  44. I. Kinloch, R. Dryfe, and A. Abdelkader (2018), invented by University of Manchester, assignee. In. Google Patents, U.S. Patent Application no. 15/770,046.

  45. R. Cai, J. Chen, D. Yang, Z. Zhang, S. Peng, J. Wu, W. Zhang, C. Zhu, T. M. Lim, and H. Zhang (2013). ACS appl. Mater. Inter. 5, 10389.

    CAS  Google Scholar 

  46. Z. Zhang, Y. Wang, B. Zhang, Z. Yang, and S. Pan (2018). Angew. Chem. Int. Ed. 57, 6577.

    CAS  Google Scholar 

  47. W. Li, D. Chen, F. Xia, J. Z. Tan, J. Song, W. J. Song, and R. A. Caruso (2016). Chem. Commun. 52, 4481.

    CAS  Google Scholar 

  48. D. Chakravarty and D. J. Late (2015). Rsc Adv. 5, 21700.

    CAS  Google Scholar 

  49. B. Yu, B. Zheng, X. Wang, F. Qi, J. He, W. Zhang, and Y. Chen (2017). Appl. Surf. Sci. 400, 420.

    CAS  Google Scholar 

  50. X. Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, P. Li, and W. Zhang (2017). J. Alloys Compd. 691, 698.

    CAS  Google Scholar 

  51. A. Ali and W. C. Oh (2017). Sci. Rep. 7, 1867.

    PubMed  PubMed Central  Google Scholar 

  52. J. Yang, H. Yao, Y. Liu, and Y. Zhang (2008). Nanoscale Res. Lett. 3, 481.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. G. Salitra, G. Hodes, E. Klein, and R. Tenne (1994). Thin Solid Films. 245, 180.

    CAS  Google Scholar 

  54. S. Brunken, R. Mientus, and K. Ellmer (2012). Phys. Status Solidi (a). 209, 317.

    CAS  Google Scholar 

  55. J. Wen, C. Ma, P. Huo, X. Liu, M. Wei, Y. Liu, X. Yao, Z. Ma, and Y. Yan (2017). J. Environ. Sci. 60, 98.

    CAS  Google Scholar 

  56. V. Sajith, C. B. Sobhan, and G. P. Peterson (2010). Adv. Mech. Eng. 2, 581407.

    Google Scholar 

  57. G. J. C. Denoga and E. N. Quiros (2004). Philipp. Eng. J. 25, 23.

    Google Scholar 

  58. A. C. Sajeevan and V. Sajith (2013). J. Eng. 2013, 589382.

  59. L. Atkins and S. Ervin (2001). Energy fuels 15, 1233.

    CAS  Google Scholar 

  60. S. Jamil, H. Ahmad, S. R. Khan, and M. R. S. A. Janjua (2018). J. Clust. Sci. 29, 685.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to United States Education Foundation for Pakistan (USEFP) and the J. William Fulbright Foreign Scholarship for funding opportunity at the Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14,853, USA. The authors are also thankful to the department of Chemistry, King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saba Jamil or Muhammad Ramzan Saeed Ashraf Janjua.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, S., Farooq, F., Khan, S.R. et al. Synthesis of WSe2 Nanorods by Selenium Powder Precursor for Photocatalytic Application and Fuel Additive. J Clust Sci 32, 1061–1073 (2021). https://doi.org/10.1007/s10876-020-01874-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01874-9

Keywords

Navigation