Skip to main content
Log in

Design and fabrication of carbon dots decorated WO3 nanosheets hybrid photoanodes for sunlight-driven dye-sensitized solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work demonstrates the selection of the substrates to be used for photoanode and counter electrode for dye-sensitized solar cells (DSSC). A novel carbon dots (CDs) decorated WO3 nanosheets hybrid structure was synthesized by facile hydrothermal route, which acts as a photoanode materials: counter electrode (Pt) and iodide/triiodide (I/I3). Sun stimulator (AM 1.5G, 100 mW/cm2) is used as source of light to evaluate the photovoltaic characteristics. The samples using various mass ratios (1:1, 1:2, 1:3) of CDs and WO3 were prepared under the same conditions. The monoclinic structure with sheet-like morphology of WO3 was identified by XRD, Raman and TEM measurements. The optimized CDs/WO3 (1:3) photoanode exhibits a huge surface area (102.4 m2/g) and porous size (12 nm) since the CDs are rapidly anchored on the WO3 nanosheets. Due to the high absorption ability that prevents the recombination rate of the electron–hole pair, the optimized CDs/WO3 (1:3) photoanode delivers a high photoconversion efficiency of 11.7%, which is 3.35 times better than that of bare WO3 (3.5%). The improved photoconversion efficiency of WO3 by carbon was also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.K. Upadhyay, J.K. Rajput, T.K. Pathak, V. Kumar, L.P. Purohit, Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160, 154–163 (2019)

    CAS  Google Scholar 

  2. T. Ma, J. Bai, C. Li, Facile synthesis of g-C3N4 wrapping on one-dimensional carbon fiber as a composite photocatalyst to degrade organic pollutants. Vacuum 145, 47–54 (2017)

    CAS  Google Scholar 

  3. Y. Dong, L. Xing, F. Hu, A. Umar, X. Wu, Efficient removal of organic dyes molecules by grain-like α-Fe2O3 nanostructures under visible light irradiation. Vacuum 150, 35–40 (2018)

    CAS  Google Scholar 

  4. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  5. N. Sofyan, A. Ridhova, A.H. Yuwono, A. Udhiarto, J.F. Fergus, Synthesis of TiO2 nanoparticles at low hydrothermal temperature and its performance for DSSC sensitized using natural dye extracted from Melastoma malabathricum L. seeds. Int. J. Energy Res. 43, 5959 (2019)

    CAS  Google Scholar 

  6. M.K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. Deacon, C. Bignozzi, M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2- based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001)

    CAS  Google Scholar 

  7. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015)

    CAS  Google Scholar 

  8. C.-M. Shih, Y.-L. Wu, Y.-C. Wang, S.R. Kumar, Y.-L. Tung, C.-C. Yang, S.J. Lue, Ionic transport and interfacial interaction of iodide/iodine redox mechanism in agarose electrolyte containing colloidal titanium dioxide nanoparticles. J. Photochem. Photobiol. A 356, 565–572 (2018)

    CAS  Google Scholar 

  9. J.-H. Yum, E. Barano, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, MdK Nazeeruddin, M. Grätzel, A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 3, 631 (2012)

    Google Scholar 

  10. D. Wang, Y. Zhang, M. Su, T. Xu, H. Yang, S. Bi, X. Zhang, Y. Fang, J. Zhao, Design of morphology-controllable ZnO nanorods/nanopariticles composite for enhanced performance of dye-sensitized solar cells. Nanomaterials 9, 931 (2019)

    CAS  Google Scholar 

  11. Q. Zhang, C. Li, TiO2 coated ZnO nanorods by mist chemical vapor deposition for application as photoanodes for dye-sensitized solar cells. Nanomaterials 9, 1339 (2019)

    CAS  Google Scholar 

  12. C.I. Oprea, M.A. Gîrțu, Structure and electronic properties of TiO2 nanoclusters and dye–nanocluster systems appropriate to model hybrid photovoltaic or photocatalytic applications. Nanomaterials 9, 357 (2019)

    CAS  Google Scholar 

  13. M.S. Jo, J.S. Cho, X.L. Wang, E.M. Jin, S.M. Jeong, D.W. Kang, Improving of the photovoltaic characteristics of dye-sensitized solar cells using a photoelectrode with electrospun porous TiO2 nanofibers. Nanomaterials 9, 95 (2019)

    Google Scholar 

  14. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Gratzel, M.K. Nazeeruddin, M. Gratzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008)

    CAS  Google Scholar 

  15. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H.J. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006)

    CAS  Google Scholar 

  16. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Dye-sensitized solar cells with conversion efficiency of 11 1%. Jpn. J. Appl. Phys. 45, 638–640 (2006)

    Google Scholar 

  17. X. Liu, J. Fang, Y. Liu, T. Lin, Progress in nanostructured photoanodes for dye-sensitized solar cells. Front. Mater. Sci. 10, 225–237 (2016)

    Google Scholar 

  18. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/gC3N4 composites with enhanced photocatalytic activity. Dalton Trans. 42, 8606–8616 (2013)

    CAS  Google Scholar 

  19. X. Su, F. Xiao, Y. Li, J. Jian, Q. Sun, J. Wang, Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Mater. Lett. 64, 1232–1234 (2010)

    CAS  Google Scholar 

  20. J. Zhang, J. Liu, W. Zhao, Z. Ding, J. Mai, Y. Fang, Facile synthesis of high quality Z-scheme W18O49 nanowire-g-C3N4 photocatalyst for the enhanced visible light-driven photocatalytic hydrogen evolution. J. Alloys Compd. 764, 1–9 (2018)

    CAS  Google Scholar 

  21. B.C. Martindale, G.A. Hutton, C.A. Caputo, E. Reisner, Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J. Am. Chem. Soc. 137, 6018–6025 (2015)

    CAS  Google Scholar 

  22. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 52, 3953–3957 (2013)

    CAS  Google Scholar 

  23. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    CAS  Google Scholar 

  24. X. Gu, F. Wu, B. Lei, J. Wang, Z. Chen, K. Xie, Y. Song, D. Sun, L. Sun, H. Zhou, F. Fang, Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. J. Power Sources 320, 231–238 (2016)

    CAS  Google Scholar 

  25. J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015)

    CAS  Google Scholar 

  26. H.T. Li, X.D. He, Z.H. Kang, H. Huang, Y. Liu, J.L. Liu, S.Y. Lian, C.H.A. Tsang, X.B. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010)

    CAS  Google Scholar 

  27. S. Liu, J. Liu, T. Wang, C. Wang, Z. Ge, J. Liu, X. Hao, N. Du, H. Xiao, Preparation and photovoltaic properties of dye-sensitized solar cells based on zinc titanium mixed metal oxides. Coll. Surf. A 568, 59–65 (2019)

    CAS  Google Scholar 

  28. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    CAS  Google Scholar 

  29. H. Ming, Z. Ma, Y. Liu, K.M. Pan, H. Yu, F. Wang, Z.H. Kang, Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton. Trans. 41, 9526–9531 (2012)

    CAS  Google Scholar 

  30. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, Effect of copper on structural, optical and electrochemical properties of SnO2 nanoparticles. J. Optoelect. Adv. Mater. 12, 1894–1898 (2010)

    CAS  Google Scholar 

  31. M. Parthibavarman, M. Karthik, S. Prabhakaran, Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224–232 (2018)

    CAS  Google Scholar 

  32. J.G. Hou, H.J. Cheng, C. Yang, O. Takeda, H.M. Zhu, Hierarchical carbon quantum dots/hydrogenated-γ-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy 18, 143–153 (2015)

    CAS  Google Scholar 

  33. H.C. Zhang, H. Huang, H. Ming, H.T. Li, L.L. Zhang, Y. Liu, Z.H. Kang, Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem. 22, 10501–10506 (2012)

    CAS  Google Scholar 

  34. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz, Infrared and Raman study of WO3 tungsten trioxides and WO3.xH2O tungsten trioxide tydrates. J. Solid State Chem. 67, 235–247 (1987)

    CAS  Google Scholar 

  35. A. Wolcott, T.R. Kuykendall, W. Chen, S. Chen, J.Z. Zhang, Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). J. Phys. Chem. B 110, 25288–25296 (2006)

    CAS  Google Scholar 

  36. R.M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-Granados, G. Roselló-Márquez, J. Garcia-Anton, A simple method to fabricate high-performance nanostructured WO3 photocatalysts with adjusted morphology in the presence of complexing agents. Mater Design 116, 160–170 (2017)

    Google Scholar 

  37. R. Shao, L. Sun, L. Tang, Z. Chen, Preparation and characterization of magnetic core–shell ZnFe2O4@ ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem. Eng. J. 217, 185–191 (2013)

    CAS  Google Scholar 

  38. Y. Li, Z. Tang, J. Zhang, Z. Zhang, Exposed facet and crystal phase tuning of hierarchical tungsten oxide nanostructures and their enhanced visible-light-driven photocatalytic performance. CrystEngComm 17, 9102–9110 (2015)

    CAS  Google Scholar 

  39. F. Dong, Z. Wang, Y. Sun, W.K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 401, 70–79 (2013)

    CAS  Google Scholar 

  40. S. Zuo, H. Xu, W. Liao, X. Yuan, L. Sun, Molten-salt synthesis of g-C3N4–Cu2O heterojunctions with highly enhanced photocatalytic performance. Coll. Surf. A 546, 307–315 (2018)

    CAS  Google Scholar 

  41. M. Yin, L. Yb, S. Liu, Synthesis of Ag quantum dots sensitized WO3 nanosheets and their enhanced acetone sensing properties. Mater. Lett. 186, 66–69 (2017)

    CAS  Google Scholar 

  42. J.Z. Ou, M.H. Yaacob, M. Breedon, H.D. Zheng, J.L. Campbell, K. Latham, K. Kalantar-Zadeh, In situ Raman spectroscopy of H2 interaction with WO3 films. Phys. Chem. Chem. Phys. 13, 7330–7339 (2011)

    CAS  Google Scholar 

  43. M. Farhadian, P. Sangpour, G. Hosseinzadeh, Preparation and photocatalytic activity of WO3-MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Adv. 6, 39063–39073 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanathan, S., Prakasam, A. Design and fabrication of carbon dots decorated WO3 nanosheets hybrid photoanodes for sunlight-driven dye-sensitized solar cell applications. J Mater Sci: Mater Electron 31, 14553–14562 (2020). https://doi.org/10.1007/s10854-020-04016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04016-z

Navigation