Skip to main content
Log in

Synthesis of Cu2ZnSnS4 Nanoparticles for Applications as Counter Electrodes of CdS Quantum Dot-Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) nanoparticles have been synthesized through a one-step solvothermal route, which exhibited a nearly single kesterite structure with a fundamental band gap of ∼1.54 eV. Quantum dots-sensitized solar cells were fabricated based on CZTS counter electrodes and CdS QD-sensitized TiO2 NRs photoelectrodes with various thicknesses of QD sensitization layers. The cells based on a CZTS electrode, compared with other single-layer DSSCs in this study, had the highest conversion efficiency of 0.27% (for CdS layer numbers of 9), which was obviously higher than Pt. The performance improvement was attributed to the better stability, sunlight sensitivity, and the resulting photoelectrocatalytic activity of the CZTS electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Chaudhuri and D. Tiwari, Sol. Energy Mater. Sol. Cells 101, 46 (2012).

    Article  Google Scholar 

  2. S.E. Habas, H.A.S. Platt, M.F.A.M. van Hest, and D.S. Ginley, Chem. Rev. 110, 6571 (2010).

    Article  Google Scholar 

  3. T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Mater. 22, E156 (2010).

    Article  Google Scholar 

  4. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt. 20, 606 (2012).

    Article  Google Scholar 

  5. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).

    Article  Google Scholar 

  6. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, and R. Menner, Prog. Photovolt. 19, 894 (2011).

    Article  Google Scholar 

  7. X. He, H. Shen, W. Wang, B. Zhang, Y. Dai, and Y. Lu, J.␣Mater. Sci. 24, 572 (2013).

    Google Scholar 

  8. J. He, L. Sun, S. Chen, Y. Chen, P.X. Yang, and J.H. Chu, J.␣Alloys Compd. 511, 129 (2012).

    Article  Google Scholar 

  9. S.C. Riha, B.A. Parkinson, and A.L. Prieto, J. Am. Chem. Soc. 133, 15272 (2011).

    Article  Google Scholar 

  10. L. Sun, J. He, H. Kong, P.X. Yang, and J.H. Chu, Sol. Energy Mater. Sol. Cells 95, 2907 (2011).

    Article  Google Scholar 

  11. J.P. Leitão, N.M. Santos, P.A. Fernandes, P.M.P. Salomė, A.F. da Cunha, and J.C. González, Phys. Rev. B 84, 024120 (2011).

    Article  Google Scholar 

  12. Q. Guo, G.M. Ford, W.C. Yang, C.J. Hages, H.W. Hillhouse, and R. Agrawal, Sol. Energy Mater. Sol. Cells 105, 132 (2012).

    Article  Google Scholar 

  13. T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, and B. Kunert, Sol. Energy Mater. Sol. Cells 101, 87 (2012).

    Article  Google Scholar 

  14. Y. Liu, D.Y. Kong, H. You, C. Chen, X. Lin, and J. Brugger, J. Mater. Sci. 24, 529 (2013).

    Google Scholar 

  15. Q. Tian, X. Xu, L. Han, M. Tang, R. Zou, and Z. Chen, CrystEngComm 14, 3847 (2012).

    Article  Google Scholar 

  16. B. Wang and L.L. Kerr, Sol. Energy Mater. Sol. Cells 95, 2531 (2011).

    Article  Google Scholar 

  17. J. Just, D. Lützenkirchen-Hecht, R. Frahm, S. Schorr, and T. Unold, Appl. Phys. Lett. 99, 262105 (2011).

    Article  Google Scholar 

  18. S. Bag, O. Gunawan, and D.B. Mitzi, Energy Environ. Sci. 5, 7060 (2012).

    Article  Google Scholar 

  19. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, and D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013).

    Article  Google Scholar 

  20. P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, and S. Maekawa, J. Am. Chem. Soc. 134, 2469 (2012).

    Article  Google Scholar 

  21. G. Ma, T. Minegishi, K. Domen, J. Kubota, and K. Domen, Chem. Phys. Lett. 501, 619 (2011).

    Article  Google Scholar 

  22. Y.F. Du, J.Q. Fan, W.H. Zhou, Z.J. Zhou, J. Jiao, and S.X. Wu, ACS Appl. Mater. Interfaces 4, 1796 (2012).

    Article  Google Scholar 

  23. X. Xin, M. He, and W. Han, Angew. Chem. Int. Ed. 50, 11739 (2011).

    Article  Google Scholar 

  24. X. Wang, W.H. Zhou, Z.J. Zhou, Z.L. Hou, J. Guo, and S.X. Wu, Electrochim. Acta 104, 26 (2013).

    Article  Google Scholar 

  25. L. Li, B.L. Zhang, M. Cao, Y. Sun, J.C. Jiang, P.F. Hu, Y. Shen, and L.J. Wang, J. Alloys Compd. 551, 24 (2013).

    Article  Google Scholar 

  26. P.C. Dai, G. Zhang, Y.C. Cheng, H.C. Jiang, Z.Y. Feng, Z.J. Lin, and J.H. Zhan, Chem. Commun. 48, 3006 (2012).

    Article  Google Scholar 

  27. Y.L. Lee and Y.S. Lo, Adv. Funct. Mater. 19, 604 (2009).

    Article  Google Scholar 

  28. G. Hodes, J. Phys. Chem. C 112, 17778 (2008).

    Article  Google Scholar 

  29. P.V. Kamat, Acc. Chem. Res. 45, 1906 (2012).

    Article  Google Scholar 

  30. X. Zeng, D. Xiong, W. Zhang, L. Ming, Z. Xu, Z. Huang, M. Wang, W. Chen, and Y.B. Cheng, Nanoscale 5, 6992 (2013).

    Article  Google Scholar 

  31. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, and Q. Meng, Electrochem. Commun. 12, 327 (2010).

    Article  Google Scholar 

  32. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, Appl. Phys. Lett. 97, 123107 (2010).

    Article  Google Scholar 

  33. Y. Wang, M. Wu, X. Lin, A. Hagfeldt, and T. Ma, Eur. J. Inorg. Chem. 22, 3557 (2012).

    Article  Google Scholar 

  34. C.H. Chang and Y.L. Lee, Appl. Phys. Lett. 91, 053503 (2007).

    Article  Google Scholar 

  35. B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).

    Article  Google Scholar 

  36. X.Q. Gu, Y.L. Zhao, and Y.H. Qiang, J. Mater. Sci. 23, 1373 (2012).

    Google Scholar 

  37. P.K. Sarswat, M.L. Free, and A. Tiwari, Phys. Status Solidi B 248, 2170 (2011).

    Google Scholar 

  38. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, and H. Miyake, J Cryst Growth 341, 38 (2012).

    Article  Google Scholar 

  39. M. Grossberg, J. Krustok, J. Raudoja, and T. Raadik, Appl. Phys. Lett. 101, 102102 (2012).

    Article  Google Scholar 

  40. K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 838 (2011).

    Article  Google Scholar 

  41. J. Xu, X. Yang, Q.D. Yang, T.L. Wong, and C.S. Lee, J. Phys. Chem. C 116, 19718 (2012).

    Article  Google Scholar 

  42. Y.L. Lee and C.H. Chang, J. Power Sources 185, 584 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central University 2013 QNA04 and Natural Science Foundation of Jiangsu Province BK20130198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghuai Qiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Zhang, S., Qiang, Y. et al. Synthesis of Cu2ZnSnS4 Nanoparticles for Applications as Counter Electrodes of CdS Quantum Dot-Sensitized Solar Cells. J. Electron. Mater. 43, 2709–2714 (2014). https://doi.org/10.1007/s11664-014-3200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3200-8

Keywords

Navigation