Skip to main content
Log in

Scorzonera calyculata Aerial Part Extract Mediated Synthesis of Silver Nanoparticles: Evaluation of Their Antibacterial, Antioxidant and Anticancer Activities

  • original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, we employed an ethanolic extract of the Scorzonera calyculata for biosynthesis of AgNPs for the first time. The AgNPs were synthesized using reduction of AgNO3 solution by S. calyculata extract and synthesized AgNPs were characterized using ultraviolet visible spectroscopy, transmission electron microscope, scanning electron microscopy and Fourier transform infrared spectroscopy. In addition, the anti-oxidant activity of synthesized AgNPs were studied by 2,2-diphenyl, 1-picryl hydrazyl (DPPH) assay. The microscopic analysis showed that the synthesized AgNPs were spherical in shape with an average size of 25.28 nm. The DPPH results showed that the significant antioxidant activity of AgNPs. The antibacterial activity of the AgNPs was carried out by minimum inhibitory concentration that showed high toxicity against Gram negative bacteria. The cytotoxicity of the synthesized AgNPs against human lung cancer cell (A549) were investigated using MTT method and the inhibitory concentration (IC50) was found to be 12.5 µg/mL. Finally, the Annexin V/PI staining indicated that the synthesized AgNPs could induce apoptosis in A549 cells as compared to untreated cells. In conclusion, biosynthesis of AgNPs using S. calyculata extract is a very rapid and cost-effective method and the synthesized AgNPs had good biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Bakand, A. Hayes, and F. Dechsakulthorn (2012). Inhal. Toxicol. 24, 2.

    Article  CAS  Google Scholar 

  2. K. Shashi (2007). Int. J. Nanomedicine. 2, 2.

    Google Scholar 

  3. E. H. Chang, J. B. Harford, M. A. Eaton, P. M. Boisseau, A. Dube, R. Hayeshi, H. Swai, and D. S. Lee (2015). Biochem. Biophys. Res. Commun. 468, 3.

    Google Scholar 

  4. L. Bregoli, D. Movia, J. D. Gavigan-Imedio, J. Lysaght, J. Reynolds, and A. Prina-Mello (2016). Nanomedicine. 12, 1.

    Article  CAS  Google Scholar 

  5. G. R. Rudramurthy, M. K. Swamy, U. R. Sinniah, and A. Ghasemzadeh (2016). Molecules 21, 7.

    Article  CAS  Google Scholar 

  6. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari (2014). Res. Pharm. Sci. 9, 6.

    Google Scholar 

  7. S. Poulose, T. Panda, P. P. Nair, and T. Théodore (2014). J. Nanosci. Nanotechnol. 14, 2.

    Article  CAS  Google Scholar 

  8. R. I. Iyer and T. Panda (2014). Biogenic synthesis of gold and silver nanoparticles by seed plants. J. Nanosci. Nanotechnol. 14, (2), 2024–2037.

    Article  CAS  PubMed  Google Scholar 

  9. K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnology. 16, 1.

    Article  CAS  Google Scholar 

  10. V. Kathiravan, S. Ravi, S. Ashokkumar, S. Velmurugan, K. Elumalai, and C. P. Khatiwada (2015). Spectrochim. Acta A. Mol. Biomol. Spectrosc. 139, 5.

    Article  CAS  Google Scholar 

  11. M. Rafique, I. Sadaf, M. S. Rafique, and M. B. Tahir (2017). Artif. Cells. Nanomed. Biotechnol. 45, 7.

    Article  CAS  Google Scholar 

  12. S. Duran and E. Hamzaoglu (2004). Biologia-Bratislava. 59, 1.

    Google Scholar 

  13. K. Bremer Asteraceae: Cladistics and classification (Timber Press, Portland, 1994).

    Google Scholar 

  14. Ö. B. Acikara, J. Hošek, P. Babula, and J. Cvačka (2015). Molecules 21, 1.

    Article  CAS  Google Scholar 

  15. I. Süntar, O. B. Acikara, G. S. Citoglu, H. Keles, B. Ergene, and E. K. Akkol (2012). Curr. Pharm. Des. 18, 10.

    Google Scholar 

  16. C. K. Sathiya and S. Akilandeswari (2014). Spectrochim. Acta A. Mol. Biomol Spectrosc. 128, 337.

    Article  CAS  PubMed  Google Scholar 

  17. R. Madaan, G. Bansal, S. Kumar, and A. Sharma (2011). Indian J. Pharm. Sci. 73, 6.

    Article  Google Scholar 

  18. G. Miliauskas, P. Venskutonis, and T. Van Beek (2004). Food Chem. 85, 31.

    Article  CAS  Google Scholar 

  19. M. P. Patil and G. D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 1.

    Article  CAS  Google Scholar 

  20. V. Goodarzi, H. Zamani, L. Bajuli, and A. Moradshahi (2014). Mol. Biol. Res. Commun. 3, 16.

    Google Scholar 

  21. Y. Y. Loo, Y. Rukayadi, C. H. Nor-Khaizura, B. W. Chieng Kuan, M. Nishibuchi, and S. Radu (2018). Front. Microbiol. 9, 2.

    Article  Google Scholar 

  22. B. Mousavi, F. Tafvizi, and S. Zaker Bostanabad (2018). Artif Cells. Nanomed. Biotechnol. 1, 12.

    Google Scholar 

  23. S. Ramalakshmi and K. Muthuchelian (2011). Int. J. Chem. Tech Res. 3, 3.

    Google Scholar 

  24. M. Padma, S. Ganesan, T. Jayaseelan, S. Azhagumadhavan, P. Sasikala, S. Senthilkumar, and P. Mani (2019). J. Drug. Del. Ther. 9, 1.

    Google Scholar 

  25. F. Mujeeb, P. Bajpai, and N. Pathak (2014). Bio. Med. Research International. 15, 6.

    Google Scholar 

  26. N. Premjanu and C. Jaynthy (2014). Int. J. Chem. Tech. Res. 7, 1.

    Google Scholar 

  27. V. Varadharaj and M. Kuppan (2015). Asian J. Pharm Clin. Res. 8, 6.

    Google Scholar 

  28. M. K. Aadesariya, V. R. Ram, and P. N. Dave (2018). IOSR. J. Eng. 8, 9.

    Google Scholar 

  29. Ö. B. Acıkara, G. S. Çitoğlu, S. Dall’Acqua, K. Smejkal, J. Cvačka, and M. Zemlička (2012). Nat. Prod. Res. 26, 20.

    Article  Google Scholar 

  30. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Acta. Naturae. 6, 1.

    Article  Google Scholar 

  31. G. A. Otunola, A. J. Afolayan, E. O. Ajayi, and S. W. Odeyemi (2017). Pharmacogn. Mag. 13, 2.

    Article  Google Scholar 

  32. Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin (2018). Int. J. Nanomedicine. 13, 3.

    Article  Google Scholar 

  33. X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan (2016). Int. J. Mol. Sci. 17, 9.

    Google Scholar 

  34. M. P. Patil and G. D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 1.

    Article  CAS  Google Scholar 

  35. Y. Y. Loo, Y. Rukayadi, M. A. Nor-Khaizura, C. H. Kuan, B. W. Chieng, M. Nishibuchi, and S. Radu (2018). Front. Microbiol. 9, 1555.

    Article  PubMed  PubMed Central  Google Scholar 

  36. G. M. Sulaiman, W. H. Mohammed, T. R. Marzoog, A. A. Al-Amiery, A. A. Kadhum, and A. B. Mohamad (2013). Asian. Pac. J. Trop. Biomed. 3, 1.

    Article  CAS  Google Scholar 

  37. M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine (Lond). 11, 23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Islamic Azad University, Central Tehran Branch and the authors gratefully acknowledge to Dr. Hassan Noorbazargan for his cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Masoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayromlou, A., Masoudi, S. & Mirzaie, A. Scorzonera calyculata Aerial Part Extract Mediated Synthesis of Silver Nanoparticles: Evaluation of Their Antibacterial, Antioxidant and Anticancer Activities. J Clust Sci 30, 1037–1050 (2019). https://doi.org/10.1007/s10876-019-01563-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01563-2

Keywords

Navigation