Skip to main content
Log in

Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. X. Kong, B.Yang, B.Q. Xu, Y.F. Li: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4405–10.

    Article  Google Scholar 

  2. Y. N. Dai, B. Yang: Vacuum metallurgy for nonferrous metals and materials, Metallurgical Industry Press, Beijing, 2009 [in Chinese].

    Google Scholar 

  3. F. Chen, Z. K. He, Y. N. Dai: J. Kunming Inst. Technol., 1984, vol. 3, pp. 108–16 [in Chinese].

    Google Scholar 

  4. G.J. Zhang, Y.C. Liu, Y.N. Dai: Nonferrous Met. (Extr. Metall.), 1989, vol. 4, pp. 21–22 [in Chinese].

    Google Scholar 

  5. G. J. Zhang, Y. C. Liu, Y. N. Dai: J. Kunming Inst. Technol., 1989, vol. 14, pp. 68-76 [in Chinese].

    Google Scholar 

  6. Y. N. Dai, G. J. Zhang: Trans. Nonferrous Met. Soc. China, 1991, vol. 1, pp. 39–44 [in Chinese].

    Google Scholar 

  7. B.Yang, Y. N. Dai, G. J. Zhang: Yunnan Metall., 1999, vol. 28, pp. 40–43 [in Chinese].

    Google Scholar 

  8. X. J. Zhang: Kunming University of Science and Technology, Kunming, 1983 [in Chinese].

  9. J. Hu: Kunming University of Science and Technology Kunming, 1996 [in Chinese].

  10. W. J. Kroll: Trans. Electrochem. Soc., 1945, vol. 87, pp. 571–87.

    Article  Google Scholar 

  11. R. Kumar, C. S. Sivaramakrishnan: J. Mater. Sci., 1969, vol. 4, pp. 383–88.

    Article  Google Scholar 

  12. F. X. Guo, W. Wang, H. L. Yang, J. Y. Qin, X. L. Tian: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 3113–19.

    Article  Google Scholar 

  13. X. F. Bian, H. Li, L. Zhang, J. J. Ma: Chin. Sci. Bull., 1996, vol. 41, pp. 873–78.

    Google Scholar 

  14. Z. T. Fidkowski, M. F. Malone, M. F. Doherty: Comput. Chem. Eng., 1993, vol. 17, pp. 1141–55.

    Article  Google Scholar 

  15. Y. Senda, F. Shimojo, K. Hoshino: J. Phys. Soc. Jpn., 1998, vol. 67, pp. 916–21.

    Article  Google Scholar 

  16. G. A. De Wijs, G. Pastore, A. Selloni, W. Van der Lugt: J. Chem. Phys., 1995, vol. 103, pp. 5031–40.

    Article  Google Scholar 

  17. G. Seifert, R. Kaschner, M. Schöne, G. Pastore: J. Phys. Condens. Matter, 1998, vol. 10, pp. 1175–98.

    Article  Google Scholar 

  18. C. Q. Zhang, Y. H. Wei, C. F. Zhu: Chem. Phys. Lett., 2005, vol. 408, pp. 348–53.

    Article  Google Scholar 

  19. Q. H. Hao, W. Liu, Y. D. Li, C. S. Liu: J. Non-Cryst. Solids, 2010, vol. 356, pp. 8-13.

    Article  Google Scholar 

  20. J. M. Holender, M. J. Gillan: Phys. Rev. B, 1995, vol. 53, pp. 4399–407.

    Article  Google Scholar 

  21. K. Seifert-Lorenz, J. Hafner: Phys. Rev. B, 1999, vol. 59, pp. 843–54.

    Article  Google Scholar 

  22. Y. Senda, F. Shimojo, K. Hoshino: J. non-cryst. solids, 1999, vol. 250, pp. 258–62.

    Article  Google Scholar 

  23. D. P. Tao: Thermochim. Acta, 2000, vol. 363, pp. 105–13.

    Article  Google Scholar 

  24. T. K. Gu, X. F. Bian, J. Y. Qin, C. Y. Xu: Phys. Rev. B, 2005, vol. 71, pp. 104206-1-8.

    Google Scholar 

  25. W. Jank, J. Hafner: Phys. Rev. B, 1990, vol. 41, pp. 1497–515.

    Article  Google Scholar 

  26. F. Knider, J. Hugel, A. V. Postnikov: J. Phys. Condens. Matter, 2007, vol. 19, pp. 196105-1–196105-12.

    Article  Google Scholar 

  27. M. M. G. Alemany, R. C. Longo, L. J. Gallego, D. J. González, L. E. González, L. Tiago Murilo, R. Chelikowsky James: Phys. Rev. B, 2007, vol. 76, pp. 214203-1–214203-7.

    Article  Google Scholar 

  28. Q. H. Hao, Y. D. Li, X. S. Kong, C. S. Liu: Int. J. Mod. Phys. B, 2013, vol. 27, pp. 1350012-1–1350012-10.

    Google Scholar 

  29. C. Bergman, M. V. Coulet, R. Bellissent, K. Seifert-Lorenz, J. Hafner: J. Non-cryst. Solids, 1999, vol. 250, pp. 253–57.

    Article  Google Scholar 

  30. K. Seifert, J. Hafner, G. Kresse: J. Non-cryst. Solids, 1996, vol. 205–207, pp. 871–74.

    Article  Google Scholar 

  31. T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, K. Hoshino: Phys. Rev. B, 2003, vol. 67, pp. 064201-1–064201-12.

    Article  Google Scholar 

  32. J. Y. Qin, X. F. Bian, W. M. Wang, J. J. Ma, C. Y. Xu: Chin. Sci. Bull., 1998, vol. 43, pp. 1445–50.

    Google Scholar 

  33. H. R. Wang, Y. F. Ye, G. H. Min: Metallofiz. i noveishie tekhnologii, 2001, vol. 23, pp. 727–34.

    Google Scholar 

  34. H. Neumann, A. Mikula: J. Non-Cryst. Solids, 2002, Vol. 312–314, pp. 30–33.

    Article  Google Scholar 

  35. W. Van der Lugt: J. Phys. Cond. Matter, 1996, vol. 8, pp. 6115–38.

    Article  Google Scholar 

  36. P. A. Egelstaff: An introduction to the liquid state, Clarendon, New York, 1992, pp. 240.

    Google Scholar 

  37. T. K. Gu, J. Y. Qin, X. F. Bian, C. Y. Xu, Y. H. Qi: Phys. Rev. B, 2004, vol. 70, pp. 245214-1–245214-7.

    Google Scholar 

  38. G. X. Qian, M. Weinert, G. W. Fernando, J. W. Davenport: Phys. Rev. Lett., 1990, vol. 64, pp. 1146–49.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Cultivating Plan Program for the Technological Leading Talents of Yunnan Province (2014HA003), the National Natural Science Foundation of China and Project (Grant No. 51474116, 51104079, 51104078), the Joint Program of Natural Science Foundation of China and Yunnan Province (Grant U1202271), the Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1250), the Program for Innovative Research Team in Nonferrous Metal Vacuum Metallurgy of Ministry of Science and Technology (Grant No. 2014RA4018), and the Fundamental Research of Yunnan province (Grant No. 2013FZ033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Jiang.

Additional information

Manuscript submitted July 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Jiang, W., Yang, B. et al. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation. Metall Mater Trans A 47, 5214–5222 (2016). https://doi.org/10.1007/s11661-016-3663-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3663-8

Keywords

Navigation